The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193681 Discriminant of minimal polynomial of 2*cos(Pi/n) (see A187360). 2
 1, 1, 1, 8, 5, 12, 49, 2048, 81, 2000, 14641, 2304, 371293, 1075648, 1125, 2147483648, 410338673, 1259712, 16983563041, 1024000000, 453789, 2414538435584, 41426511213649, 1358954496, 762939453125, 7340688973975552, 31381059609, 4739148267126784, 10260628712958602189, 324000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS For the discriminant of a polynomial in terms of the square of a determinant of a Vandermonde matrix build from the zeros of the polynomial see, e.g., A127670.   The zeros of the polynomials C(n,x) with coefficient triangle A187360 are given there in a comment. The discriminant of the monic C(n,x) polynomial can also be computed from its zeros x_i and the derivative of C, via (-1)^binomial(delta(n),2)*product(C'(n,x)|_{x=x_i},i=1..delta(n)), with the degree delta(n)=A055034(n). For a reference see, e.g., Rivlin, p. 218, quoted in A127670. LINKS Robert Israel, Table of n, a(n) for n = 1..500 Ed Pegg Jr, Table illustrating A193681 {Each box gives n ,  degree   (A055034  phi(2*n)/2) / determinant    (A193681) .) FORMULA a(n) = discriminant(C(n,x)), n>=1, with C(n,x):=sum(A187360(n,m)*x^m,m=0..A055034(n)), the minimal polynomial of 2*cos(Pi/n). MAPLE g:= proc(n) local P, z, j;    P:= factor(evala(Norm(z-convert(2*cos(Pi/n), RootOf))));    if type(P, `^`) then P:= op(1, P) fi;    discrim(P, z) end proc: map(g, [\$1..100]); # Robert Israel, Aug 04 2015 MATHEMATICA Table[NumberFieldDiscriminant[Cos[Pi/m]], {m, 1, z}]  (* Clark Kimberling, Aug 03 2015 *) CROSSREFS Cf. A055034, A127670, A187360, A193678. Sequence in context: A316689 A087462 A168204 * A253806 A199806 A070484 Adjacent sequences:  A193678 A193679 A193680 * A193682 A193683 A193684 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Sep 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 16:41 EST 2020. Contains 331208 sequences. (Running on oeis4.)