|
FORMULA
|
From Peter Luschny, Aug 20 2014 : (Start)
a(n) = (2^n*Gamma(n+3/2))/sqrt(Pi) + 1/2.
a(n) = 2^n*pochhammer(1/2, n+1) + 1/2.
a(n) = ((2*a(n-1) - 2*a(n-2))*n^2 + a(n-2)*n - a(n-1))/(n-1) for n>1, a(0)=1, a(1)=2. (End)
(-n+1)*a(n) +(2*n^2-1)*a(n-1) -n*(2*n-1)*a(n-2)=0. - R. J. Mathar, Feb 19 2015
E.g.f.: (exp(x) + 1/(1-2*x)^(3/2))/2. - Vladimir Reshetnikov, Apr 25 2016
|
|
MATHEMATICA
|
q[n_, k_] := 1;
r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}]
u[0, x_] := 1; u[n_, x_] := (x + n)*u[n - 1, x]
p[n_, k_] := Coefficient[u[n, x], x, k]
v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
Table[v[n], {n, 0, 18}] (* A193651 *)
TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
Table[r[k], {k, 0, 8}] (* 2^k *)
TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]] (* A130534 *)
Table[((2 n + 1)!! + 1)/2, {n, 0, 18}] (* or *)
Table[(2^n Gamma[n + 3/2])/Sqrt[Pi] + 1/2, {n, 0, 18}] (* or *)
Table[2^n Pochhammer[1/2, n + 1] + 1/2, {n, 0, 18}] (* Michael De Vlieger, Apr 25 2016 *)
|