%I #19 Mar 12 2016 16:24:59
%S 0,-1,-7,-32,0,-15625,243860689,59468035633789920,
%T 3536447262141707692104062559388672,
%U 12506459237909580203511583184455022770672120296396568887010875139183
%N a(n) = a(n-1)^2 - n^(n+1).
%C Example of a recursive sequence which produces a table containing two zeros.
%H Vincenzo Librandi, <a href="/A193637/b193637.txt">Table of n, a(n) for n = 0..12</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RecursiveSequence.html">Recursive Sequence</a>
%F a(0) = 0, a(n) = a(n-1)^2 - n^(n+1).
%e a(2) = -7 because a(1) = -1 and (-1)^2 - 2^(2+1) = -7.
%t RecurrenceTable[{a[n] == a[n - 1]^2 - n^(n + 1), a[0] == 0}, a, {n, 10}]
%o (PARI) a=0; for(n=0, 10, print1(a=a^2-n^(n+1), ", "));
%Y Cf. A003095, A007778.
%K easy,sign
%O 0,3
%A _Arkadiusz Wesolowski_, Aug 01 2011