%I #18 Mar 02 2023 10:22:26
%S 1,1,2,1,2,3,1,2,3,5,1,2,3,5,8,1,2,3,5,8,13,1,2,3,5,8,13,21,1,2,3,5,8,
%T 13,21,34,1,2,3,5,8,13,21,34,55,1,2,3,5,8,13,21,34,55,89,1,2,3,5,8,13,
%U 21,34,55,89,144,1,2,3,5,8,13,21,34,55,89,144,233
%N A Fibonacci triangle: T(n,k) = Fib(k+2) for 0 <= k <= n.
%C n-th row sum: A001911, Fib(n+3)-2;
%C n-th alternating row sum: A000045, F(n).
%C The augmentation (as defined at A193091) of A193588 is A193589.
%F a(n) = A115346(n) + 1. - _Filip Zaludek_, Nov 19 2016
%e First 5 rows of A193588:
%e 1;
%e 1, 2;
%e 1, 2, 3;
%e 1, 2, 3, 5;
%e 1, 2, 3, 5, 8;
%t (See A193589, the augmentation of A193588.)
%t Table[Fibonacci[k+2],{n,0,20},{k,0,n}]//Flatten (* _Harvey P. Dale_, Nov 29 2017 *)
%t Module[{nn=15,fibs},fibs=Fibonacci[Range[2,nn]];Table[Take[fibs,n],{n,nn-1}]]// Flatten (* _Harvey P. Dale_, Mar 02 2023 *)
%Y Cf. A193588.
%K nonn,tabl
%O 0,3
%A _Clark Kimberling_, Jul 31 2011