

A193587


Numbers k such that the quartic elliptic curve y^2 = 5x^4  4k has integer solutions.


0



1, 4, 11, 16, 19, 20, 25, 29, 31, 45, 59, 64, 71, 79, 81, 89, 95, 99, 101, 124, 131, 139, 151, 169, 176, 179, 181, 191, 199, 211, 220, 229, 239, 245, 251, 256, 271, 275, 284, 295, 304, 311, 316, 319, 320, 324, 349, 359, 361, 369, 379, 395, 400, 401, 439, 451
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

For these numbers k there exists an integer m such that the quintic trinomial x^5+k*x+m factors as a cubic times a quadratic.
Positive numbers of the form d^4 + 3 d^2 e  e^2.


LINKS

Table of n, a(n) for n=1..56.


FORMULA

Complement to A193533.


MATHEMATICA

aa = {}; Do[Do[k = d^4 + 3 d^2 e  e^2; If[k > 0, AppendTo[aa, k ]], {d, 100, 100}], {e, 100, 100}]; Take[Union[aa], 100]


CROSSREFS

Cf. A193524, A193528, A193531, A193533, A193584.
Sequence in context: A022131 A091391 A135105 * A261155 A248104 A072423
Adjacent sequences: A193584 A193585 A193586 * A193588 A193589 A193590


KEYWORD

nonn


AUTHOR

Artur Jasinski, Jul 31 2011


STATUS

approved



