login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193586 Number of attractors under iteration of sum of squares of digits in base n. 3
1, 5, 1, 6, 9, 13, 10, 8, 9, 9, 20, 13, 12, 35, 7, 15, 7, 21, 27, 37, 24, 36, 32, 26, 10, 36, 27, 28, 10, 56, 22, 26, 23, 63, 39, 27, 19, 67, 9, 36, 40, 54, 54, 48, 18, 73, 52, 75, 18, 117, 52, 74, 22, 65, 48, 53, 45, 44, 43, 18, 30, 67, 39, 49, 87, 111, 15 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

If b>=2 and a>=b^2 then S(a,2,b)<a. For each positive integer a, there is an positive integer m such that S^m(a,2,b)<b^2. (Grundman/Teeple, 2001, Lemma 6 and Corollary 7)

LINKS

Martin Renner, Table of n, a(n) for n = 2..300

H. G. Grundman, E. A. Teeple, Generalized Happy Numbers, Fibonacci Quarterly 39 (2001), nr. 5, p. 462-466.

EXAMPLE

In the decimal system all integers go to (1) or (4, 16, 37, 58, 89, 145, 42, 20) under the iteration of sum of squares of digits, hence there is one fixed point and one 8-cycle. Therefore a(10) = 1 + 8 = 9.

MAPLE

S:=proc(n, p, b) local Q, k, N, z; Q:=[convert(n, base, b)]; for k from 1 do N:=Q[k]; z:=convert(sum(N['i']^p, 'i'=1..nops(N)), base, b); if not member(z, Q) then Q:=[op(Q), z]; else Q:=[op(Q), z]; break; fi; od; return Q; end:

NumberOfAttractors:=proc(b) local A, i, Q; A:=[]: for i from 1 to b^2 do Q:=S(i, 2, b); A:=[op(A), Q[nops(Q)]]; od: return(nops({op(A)})); end:

seq(NumberOfAttractors(b), b=2..50);

CROSSREFS

Cf. A193583, A193585.

Sequence in context: A164105 A262153 A160824 * A007397 A204203 A261721

Adjacent sequences:  A193583 A193584 A193585 * A193587 A193588 A193589

KEYWORD

nonn,base

AUTHOR

Martin Renner, Jul 31 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 02:01 EDT 2020. Contains 334581 sequences. (Running on oeis4.)