login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193544 E.g.f.: sqrt(2)*(L/Pi) / (1 + 2*Sum_{n>=1} cosh(2*Pi*n*x/L)/cosh(n*Pi)) where L = Lemniscate constant. 10
1, -1, -3, 27, 441, -11529, -442827, 23444883, 1636819569, -145703137041, -16106380394643, 2164638920874507, 347592265948756521, -65724760945840254489, -14454276753061349098587, 3658147171522531111996803, 1055646229815910768764248289 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

L = Lemniscate constant = 2*(Pi/2)^(3/2)/gamma(3/4)^2 = 2.62205755429...

Compare the definition with that of the dual sequence A193541.

LINKS

Table of n, a(n) for n=0..16.

Eric Weisstein's World of Mathematics, Ramanujan Cos/Cosh Identity.

FORMULA

Given e.g.f. A(x), define the e.g.f. B(x) of A193541:

B(x) = sqrt(2)*L / (Pi*(1 + 2*Sum_{n>=1} cos(2*Pi*n*x/L)/cosh(n*Pi) )),

then A(x)^2 + B(x)^2 = 2 by Ramanujan's cos/cosh identity.

...

E.g.f. equals the reciprocal of the e.g.f. of A193543.

...

O.g.f.: 1/(1 + 1^2*x/(1 - 2^2*x/(1 + 3^2*x/(1 - 4^2*x/(1 + 5^2*x/(1 - 6^2*x/(1 + 7^2*x/(1 - 8^2*x/(1+...))))))))) (continued fraction).

O.g.f.: (Pi/L) * (1 + 2*Sum_{n>=1} (-1)^n/(1 - (2*n*Pi/L)^2*x) / cosh(n*Pi)) where L = Lemniscate constant. - Paul D. Hanna, Aug 29 2012

...

a(n) = 2*Pi/L * Sum_{k>=1} (-1)^k*(2*k*Pi/L)^(2*n) / cosh(k*Pi) for n>0 where L = Lemniscate constant. - Paul D. Hanna, Aug 29 2012

G.f.: 1/Q(0), where Q(k)= 1 + x*(2*k+1)^2/(1 - x*(2*k+2)^2/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 27 2013

G.f.: Q(0), where Q(k) = 1 - x*(2*k+1)^2/(x*(2*k+1)^2 + 1/(1 - x*(2*k+2)^2/(x*(2*k+2)^2 - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2013

EXAMPLE

E.g.f.: A(x) = 1 - x^2/2! - 3*x^4/4! + 27*x^6/6! + 441*x^8/8! - 11529*x^10/10! - 442827*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +...

where

A(x) = sqrt(2)*L/(Pi*(1 + 2*cosh(2*Pi*x/L)/cosh(Pi) + 2*cosh(4*Pi*x/L)/cosh(2*Pi) + 2*cosh(6*Pi*x/L)/cosh(3*Pi) +...)).

Let B(x) equal the e.g.f. of A193541, where:

B(x) = sqrt(2)*L/(Pi*(1 + 2*cos(2*Pi*x/L)/cosh(Pi) + 2*cos(4*Pi*x/L)/cosh(2*Pi) + 2*cos(6*Pi*x/L)/cosh(3*Pi) +...))

explicitly,

B(x) = 1 + x^2/2! - 3*x^4/4! - 27*x^6/6! + 441*x^8/8! + 11529*x^10/10! - 442827*x^12/12! +...

then A(x)^2 + B(x)^2 = 2

as illustrated by:

A(x)^2 = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +...

B(x)^2 = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +...

...

O.g.f.: 1 - x - 3*x^2 + 27*x^3 + 441*x^4 - 11529*x^5 - 442827*x^6 +...+ a(n)*x^n +...

O.g.f.: 1/(1 + x/(1 - 4*x/(1 + 9*x/(1 - 16*x/(1 + 25*x/(1 - 36*x/(1 + 49*x/(1 - 64*x/(1+...))))))))).

MATHEMATICA

L = 2*(Pi/2)^(3/2)/Gamma[3/4]^2; a[0] = 1; a[n_] := 2*Pi/L*NSum[(-1)^k * (2*k*Pi/L)^(2*n)/Cosh[k*Pi], {k, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> 50] // Round; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Sep 29 2017 *)

PROG

(PARI) {a(n)=local(L=2*(Pi/2)^(3/2)/gamma(3/4)^2); if(n==0, 1, 2*Pi/L*suminf(k=1, (-1)^k*(2*k*Pi/L)^(2*n)/cosh(k*Pi)))} \\ Paul D. Hanna, Aug 29 2012

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2);

R=(sqrt(2)*L/Pi)/(1 + 2*suminf(m=1, cosh(2*Pi*m*x/L +O(x^(2*n+1)))/cosh(m*Pi)));

round((2*n)!*polcoeff(R, 2*n))}

(PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2);

R=(Pi/L)*(1 + 2*suminf(m=1, (-1)^m/(1 - (2*m*Pi/L)^2*x+x*O(x^n))/cosh(m*Pi)));

round(polcoeff(R, n))} \\ Paul D. Hanna, Aug 29 2012

CROSSREFS

Cf. A159600, A193540, A193541, A193542, A193543, A193545.

Sequence in context: A159600 A159601 A193541 * A286306 A285239 A111844

Adjacent sequences: A193541 A193542 A193543 * A193545 A193546 A193547

KEYWORD

sign

AUTHOR

Paul D. Hanna, Jul 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 02:16 EST 2022. Contains 358544 sequences. (Running on oeis4.)