The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193541 E.g.f.: sqrt(2)*L / (Pi*(1 + 2*Sum_{n>=1} cos(2*Pi*n*x/L)/cosh(n*Pi) )) where L = Lemniscate constant. 8
 1, 1, -3, -27, 441, 11529, -442827, -23444883, 1636819569, 145703137041, -16106380394643, -2164638920874507, 347592265948756521, 65724760945840254489, -14454276753061349098587, -3658147171522531111996803, 1055646229815910768764248289 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS L = Lemniscate constant = 2*(Pi/2)^(3/2)/gamma(3/4)^2 = 2.62205755429... Compare the definition with that of the dual sequence A193544. LINKS Eric Weisstein's World of Mathematics, Ramanujan Cos/Cosh Identity. FORMULA Given e.g.f. A(x), define the e.g.f. B(x) of A193544: B(x) = sqrt(2)*L / (Pi*(1 + 2*Sum_{n>=1} cosh(2*Pi*n*x/L)/cosh(n*Pi) )), then A(x)^2 + B(x)^2 = 2 by Ramanujan's cos/cosh identity. E.g.f. equals the reciprocal of the e.g.f. of A193540. O.g.f.: 1/(1 - 1^2*x/(1 + 2^2*x/(1 - 3^2*x/(1 + 4^2*x/(1 - 5^2*x/(1 + 6^2*x/(1 - 7^2*x/(1 + 8^2*x/(1-...))))))))) (continued fraction). G.f.: 1/U(0) where U(k)= 1 - x*(2*k+1)^2/(1 + x*(2*k+2)^2/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 28 2012 G.f.: Q(0), where Q(k) = 1 - x*(2*k+1)^2/(x*(2*k+1)^2 - 1/(1 - x*(2*k+2)^2/(x*(2*k+2)^2 + 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2013 EXAMPLE E.g.f.: A(x) = 1 + x^2/2! - 3*x^4/4! - 27*x^6/6! + 441*x^8/8! + 11529*x^10/10! - 442827*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +... where A(x) = sqrt(2)*L/(Pi*(1 + 2*cos(2*Pi*x/L)/cosh(Pi) + 2*cos(4*Pi*x/L)/cosh(2*Pi) + 2*cos(6*Pi*x/L)/cosh(3*Pi) +...)). Let B(x) equal the e.g.f. of A193544, where: B(x) = sqrt(2)*L/(Pi*(1 + 2*cosh(2*Pi*x/L)/cosh(Pi) + 2*cosh(4*Pi*x/L)/cosh(2*Pi) + 2*cosh(6*Pi*x/L)/cosh(3*Pi) +...)) explicitly, B(x) = 1 - x^2/2! - 3*x^4/4! + 27*x^6/6! + 441*x^8/8! - 11529*x^10/10! - 442827*x^12/12! +... then A(x)^2 + B(x)^2 = 2 as illustrated by: A(x)^2 = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +... B(x)^2 = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +... ... O.g.f.: 1 + x - 3*x^2 - 27*x^3 + 441*x^4 + 11529*x^5 - 442827*x^6 +...+ a(n)*x^n +... O.g.f.: 1/(1 - x/(1 + 4*x/(1 - 9*x/(1 + 16*x/(1 - 25*x/(1 + 36*x/(1 - 49*x/(1 + 64*x/(1-...))))))))). MATHEMATICA a[ n_] := If[ n < 0, 0, With[{m = 2 n}, 2^n m! SeriesCoefficient[ JacobiND[ x, 1/2], {x, 0, m}]]]; (* Michael Somos, Oct 18 2011 *) a[ n_] := If[ n < 0, 0, With[{m = 2 n}, m! SeriesCoefficient[ JacobiDN[ x, -1], {x, 0, m}]]]; (* Michael Somos, Jun 17 2016 *) PROG (PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2); R=(sqrt(2)*L/Pi)/(1 + 2*suminf(m=1, cos(2*Pi*m*x/L +O(x^(2*n+1)))/cosh(m*Pi))); round((2*n)!*polcoeff(R, 2*n))} CROSSREFS Cf. A159600, A193540, A193542, A193543, A193544, A193545. Sequence in context: A279844 A159600 A159601 * A193544 A286306 A285239 Adjacent sequences: A193538 A193539 A193540 * A193542 A193543 A193544 KEYWORD sign AUTHOR Paul D. Hanna, Jul 29 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 02:22 EST 2022. Contains 358698 sequences. (Running on oeis4.)