The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193540 E.g.f.: Pi/(sqrt(2)*L) * (1 + 2*Sum_{n>=1} cos(2*Pi*n*x/L)/cosh(n*Pi)) where L = Lemniscate constant. 6
 1, -1, 9, -153, 4977, -261009, 20039481, -2121958377, 296297348193, -52750142341281, 11662264481073129, -3134732109393169593, 1006734732695870345937, -380718482718134681818929, 167456229155543640166939161, -84761007600911799530893148937 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS L = Lemniscate constant = 2*(Pi/2)^(3/2)/gamma(3/4)^2 = 2.62205755429... Compare the definition with that of the dual sequence A193543. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..200 T. J. Stieltjes, LXV. Sur les dérivées de sec x, p. 181, Oeuvres complètes, tome 2, Noordhoff, 1918, 617 p. Eric Weisstein's World of Mathematics, Ramanujan Cos/Cosh Identity. FORMULA Given e.g.f. A(x), define the e.g.f. of A193543: B(x) = sqrt(2)*Pi/(2*L) * (1 + 2*Sum_{n>=1} cosh(2*Pi*n*x/L) / cosh(n*Pi)), then A(x)^-2 + B(x)^-2 = 2 by Ramanujan's cos/cosh identity. ... E.g.f. equals the reciprocal of the e.g.f. of A193541. O.g.f. = 1/(1 + 1^2*x/(1 + 2*2^2*x/(1 + 3^2*x/(1 + 2*4^2*x/(1 + 5^2*x/(1 + 2*6^2*x/(1 + 7^2*x/(1 + 2*8^2*x/(1+...))))))))) (continued fraction). G.f.: 1/Q(0) where p=2, Q(k) = 1 + x*(2*k+1)^2/( 1 + p*x*(2*k+2)^2/Q(k+1) ); (continued fraction due to T. J. Stieltjes). - Sergei N. Gladkovskii, Mar 22 2013 a(n) ~ (-1)^n * 2^(7*n + 4) * Pi^(n+1) * n^(2*n + 1/2) / (exp(2*n) * Gamma(1/4)^(4*n + 2)). - Vaclav Kotesovec, Nov 29 2020 EXAMPLE E.g.f.: A(x) = 1 - x^2/2! + 9*x^4/4! - 153*x^6/6! + 4977*x^8/8! - 261009*x^10/10! + 20039481*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +... where A(x)*sqrt(2)*L/Pi = 1 + 2*cos(2*Pi*x/L)/cosh(Pi) + 2*cos(4*Pi*x/L)/cosh(2*Pi) + 2*cos(6*Pi*x/L)/cosh(3*Pi) +... Let B(x) equal the e.g.f. of A193543, where: B(x)*sqrt(2)*L/Pi = 1 + 2*cosh(2*Pi*x/L)/cosh(Pi) + 2*cosh(4*Pi*x/L)/cosh(2*Pi) + 2*cosh(6*Pi*x/L)/cosh(3*Pi) +... explicitly, B(x) = 1 + x^2/2! + 9*x^4/4! + 153*x^6/6! + 4977*x^8/8! + 261009*x^10/10! + 20039481*x^12/12! +... then A(x)^-2 + B(x)^-2 = 2 as illustrated by: A(x)^-2 = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +... B(x)^-2 = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +... ... O.g.f.: 1 - x + 9*x^2 - 153*x^3 + 4977*x^4 - 261009*x^5 + 20039481*x^6 +...+ a(n)*x^n +... O.g.f.: 1/(1 + x/(1 + 8*x/(1 + 9*x/(1 + 32*x/(1 + 25*x/(1 + 72*x/(1 + 49*x/(1 + 128*x/(1+...))))))))). MATHEMATICA a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ Tan[ JacobiAmplitude[ x, -1]] / Tan[ JacobiAmplitude[ 2 x, -1] / 2], {x, 0, m}]]]; (* Michael Somos, Oct 18 2011 *) a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ JacobiND[ x, -1], {x, 0, m}]]]; (* Michael Somos, Oct 18 2011 *) Table[SeriesCoefficient[InverseSeries[Series[EllipticF[x, 1/2], {x, 0, 32}]], 2 n + 1] (2 n + 1)! 2^n, {n, 0, 15}] (* Benedict W. J. Irwin, Apr 04 2017 *) Table[SeriesCoefficient[JacobiDN[Sqrt[2] x, 1/2], {x, 0, 2 k}] (2 k)!, {k, 0, 20}] (* Jan Mangaldan, Nov 28 2020 *) nmax = 20; s = CoefficientList[Series[JacobiDN[Sqrt[2] x, 1/2], {x, 0, 2*nmax}], x] * Range[ 0, 2*nmax]!; Table[s[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Nov 29 2020 *) PROG (PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2); R=Pi/(sqrt(2)*L)*(1 + 2*suminf(m=1, cos(2*Pi*m*x/L +O(x^(2*n+1)))/cosh(m*Pi))); round((2*n)!*polcoeff(R, 2*n))} CROSSREFS Cf. A193541, A193542, A193543, A193544, A193545. Sequence in context: A045755 A009037 A012148 * A193543 A173982 A185759 Adjacent sequences: A193537 A193538 A193539 * A193541 A193542 A193543 KEYWORD sign AUTHOR Paul D. Hanna, Jul 29 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 19:33 EST 2022. Contains 358648 sequences. (Running on oeis4.)