login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193539 O.g.f.: exp( Sum_{n>=1} (sigma(2*n)-sigma(n))^3 * x^n/n ). 0
1, 8, 64, 512, 3200, 19392, 112128, 598016, 3088896, 15362408, 73331264, 340653056, 1538392064, 6762336448, 29072665600, 122299068416, 504128374784, 2040557142592, 8116582974656, 31760991869952, 122408808197120, 464983163273216, 1742277357389312 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Here sigma(n) = A000203(n) is the sum of divisors of n. Compare g.f. to the formula for Jacobi theta_4(x) given by:

_ theta_4(x) = exp( Sum_{n>=1} (sigma(n)-sigma(2*n))*x^n/n )

where theta_4(x) = 1 + Sum_{n>=1} 2*(-x)^(n^2).

LINKS

Table of n, a(n) for n=0..22.

EXAMPLE

G.f.: A(x) = 1 + 8*x + 64*x^2 + 512*x^3 + 3200*x^4 + 19392*x^5 +...

log(A(x)) = 2^3*x + 4^3*x^2/2 + 8^3*x^3/3 + 8^3*x^4/4 + 12^3*x^5/5 + 16^3*x^6/6 + 16^3*x^7/7 + 16^3*x^8/8 + 26^3*x^9/9 +...+ A054785(n)^3*x^n/n +...

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m)-sigma(m))^3*x^m/m)+x*O(x^n)), n)}

CROSSREFS

Cf. A177398, A054785, A186690.

Sequence in context: A250350 A171282 A125498 * A228739 A267730 A189155

Adjacent sequences:  A193536 A193537 A193538 * A193540 A193541 A193542

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 30 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 07:17 EDT 2019. Contains 326172 sequences. (Running on oeis4.)