%I #8 Jul 16 2019 22:02:58
%S 1,2,9,70,805,12646,257179,6524176,200811433,7340612842,313294235311,
%T 15395868322660,861109521894637,54282864059246590,3824491871326292755,
%U 298974154411140942856,25767887775430753766353,2434836258338521063652050
%N a(n) = A193467(n)/n for n>=1.
%C A193467 is defined by the e.g.f.: Sum_{n>=0} x^n * exp(n*(n+1)/2*x).
%F O.g.f.: x * Sum_{k>=0} k! * x^k / (1 - binomial(k+2,2)*x)^(k+1). - _Ilya Gutkovskiy_, Jul 16 2019
%o (PARI) {a(n)=local(Egf); Egf=sum(m=0, n, x^m*exp(m*(m+1)/2*x+x*O(x^n))); if(n<1,0,(n-1)!*polcoeff(Egf, n))}
%Y Cf. A193467.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Jul 27 2011