login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193467 E.g.f.: Sum_{n>=0} x^n * exp(n*(n+1)/2*x). 5
1, 1, 4, 27, 280, 4025, 75876, 1800253, 52193408, 1807302897, 73406128420, 3446236588421, 184750419871920, 11194423784630281, 759960096829452260, 57367378069894391325, 4783586470578255085696, 438054092182322814028001, 43827052650093379145736900 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..300

FORMULA

E.g.f.: A(x) = Sum_{n>=0} x^n*exp(n*x)*Product_{k=1..n} (1 - x*exp((2*k-1)*x)) / (1 - x*exp(2*k*x)), due to a q-series identity.

Let q = exp(x), then the e.g.f. equals the continued fraction:

A(x) = 1/(1- q*x/(1- q*(q-1)*x/(1- q^3*x/(1- q^2*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^3-1)*x/(1- q^7*x/(1- q^4*(q^4-1)*x/(1- ...))))))))), due to a partial theta function identity.

EXAMPLE

E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 280*x^4/4! + 4025*x^5/5! + 75876*x^6/6! + 1800253*x^7/7! +...

where

A(x) = 1 + x*exp(x) + x^2*exp(3*x) + x^3*exp(6*x) + x^4*exp(10*x) +...

By a q-series identity:

A(x) = 1 + x*exp(x)*(1-x*exp(x))/(1-x*exp(2*x)) + x^2*exp(2*x)*(1-x*exp(x))*(1-x*exp(3*x))/((1-x*exp(2*x))*(1-x*exp(4*x))) + x^3*exp(3*x)*(1-x*exp(x))*(1-x*exp(3*x))*(1-x*exp(5*x))/((1-x*exp(2*x))*(1-x*exp(4*x))*(1-x*exp(6*x))) +...

PROG

(PARI) {a(n)=local(Egf); Egf=sum(m=0, n, x^m*exp(m*(m+1)/2*x+x*O(x^n))); n!*polcoeff(Egf, n)}

(PARI) /* q-series identity: */

{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*exp(m*x+x*O(x^n))*prod(k=1, m, (1-x*exp((2*k-1)*x+x*O(x^n)))/(1-x*exp((2*k)*x+x*O(x^n)))))); n!*polcoeff(A, n)}

CROSSREFS

Cf. A193421, A193469, A177385, A193466.

Sequence in context: A194787 A020558 A259485 * A179494 A203157 A119820

Adjacent sequences:  A193464 A193465 A193466 * A193468 A193469 A193470

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 27 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 13:48 EST 2016. Contains 278971 sequences.