|
|
A193447
|
|
a(n) = ((p - 2)! + p - 1)/(p*(p - 1)) where p is the n-th prime.
|
|
2
|
|
|
3, 3299, 255877, 4807626353, 1040021719579, 100970241446066087, 13409937746820630739862069, 9507270961010432209186683871, 7757618593382991688938927430572972973, 12437732976339904486975781548721278876097561, 18522993694996570934756402022946152638511627907
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,1
|
|
COMMENTS
|
Conjecture: for k >= 7, ((k - 2)! + k - 1)/(k*(k - 1)) is an integer iff k is prime.
Proof follows from Wilson's theorem. - Alois P. Heinz, Aug 07 2011
Note that a(1) = 1 is also an integer. - Jianing Song, Sep 17 2018
|
|
LINKS
|
Table of n, a(n) for n=4..14.
Wikipedia, Wilson's theorem
|
|
EXAMPLE
|
a(4) = (5! + 6)/(7*6) = 126/42 = 3.
a(5) = (9! + 10)/(11*10) = 362890/110 = 3299.
|
|
PROG
|
(PARI) a(n) = my(p=prime(n)); ((p-2)!+p-1)/(p*(p-1)) \\ Jianing Song, Sep 17 2018
|
|
CROSSREFS
|
Cf. A000040, A007619, A066161.
Sequence in context: A281928 A036520 A359130 * A134909 A286215 A259157
Adjacent sequences: A193444 A193445 A193446 * A193448 A193449 A193450
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alzhekeyev Ascar M, Jul 26 2011
|
|
EXTENSIONS
|
Name clarified by Jianing Song, Sep 17 2018
|
|
STATUS
|
approved
|
|
|
|