This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193374 E.g.f.: A(x) = exp( Sum_{n>=1} x^(n*(n+1)/2) / (n*(n+1)/2) ). 7

%I

%S 1,1,1,3,9,21,201,1191,4593,36009,620721,5297931,40360761,474989373,

%T 4345942329,122776895151,2118941145441,21344580276561,303071564084193,

%U 4476037678611219,59935820004483561,3838519441659950181,78361805638079449641,949279542954821272503

%N E.g.f.: A(x) = exp( Sum_{n>=1} x^(n*(n+1)/2) / (n*(n+1)/2) ).

%C Number of permutations of [n] whose cycle lengths are triangular numbers. - _Alois P. Heinz_, May 12 2016

%H Alois P. Heinz, <a href="/A193374/b193374.txt">Table of n, a(n) for n = 0..451</a>

%e E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 21*x^5/5! + 201*x^6/6! +...

%e where

%e log(A(x)) = x + x^3/3 + x^6/6 + x^10/10 + x^15/15 + x^21/21 +...

%p a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(8*j+1),

%p a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, May 12 2016

%t a[n_] := a[n] = If[n == 0, 1, Sum[If[IntegerQ @ Sqrt[8*j + 1], a[n - j]*(j - 1)!*Binomial[n - 1, j - 1], 0], {j, 1, n}]];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Jun 05 2018, after _Alois P. Heinz_ *)

%o (PARI) {a(n)=n!*polcoeff(exp(sum(m=1,sqrtint(2*n+1),x^(m*(m+1)/2)/(m*(m+1)/2)+x*O(x^n))),n)}

%Y Cf. A000217, A193375, A273001, A305824, A317130.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Jul 24 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 11:21 EST 2019. Contains 319354 sequences. (Running on oeis4.)