login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193342 E.g.f.: A(x) = G(x)*exp(-x/2)/x where G(x) satisfies: G(G(x)) = x*exp(G(x)), and A(x) = Sum_{n>=0} a(n)*x^(2*n)/((2*n)!*4^n). 1
1, 1, -7, 873, -335023, 314308145, -608475110391, 2176841249613401, -13293673514920102879, 130392618478782066711009, -1956708639203083689685074535, 43167469497976800185127921454793, -1354293569879914292359532215444184463, 58748391997267678043451322126451570916113 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

It is surprising that the e.g.f. of this sequence is an even function.

LINKS

Table of n, a(n) for n=0..13.

EXAMPLE

G.f.: A(x) = 1 + 1*x^2/(2!*2^2) - 7*x^4/(4!*2^4) + 873*x^6/(6!*2^6) - 335023*x^8/(8!*2^8) + 314308145*x^10/(10!*2^10) - 608475110391*x^12/(12!*2^12) + 2176841249613401*x^14/(14!*2^14) +...

where G(x) = x*A(x)*exp(x/2) satisfies G(G(x)) = x*exp(G(x)):

G(x) = x + 2*x^2/(2!*2) + 6*x^3/(3!*4) + 16*x^4/(4!*8) - 144*x^6/(6!*32) + 5488*x^7/(7!*64) + 47104*x^8/(8!*128) - 2799360*x^9/(9!*256) - 29427200*x^10/(10!*512) +...

and is the e.g.f. of A193341.

PROG

(PARI) {a(n)=local(A=x+x^2); for(i=1, 2*n, A=A+(x*exp(A+O(x^(2*n+1)))-subst(A, x, A))/2); if(n<0, 0, (2*n)!*4^n*polcoeff(A/x*exp(-x/2+O(x^(2*n+1))), 2*n))}

CROSSREFS

Cf. A193341.

Sequence in context: A269896 A087350 A308296 * A298301 A332187 A093171

Adjacent sequences: A193339 A193340 A193341 * A193343 A193344 A193345

KEYWORD

sign

AUTHOR

Paul D. Hanna, Jul 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 05:22 EST 2022. Contains 358594 sequences. (Running on oeis4.)