login
A193305
Composite numbers of the form 4, p^m, or 2*p^m for p an odd prime. All composites that have a primitive root.
3
4, 6, 9, 10, 14, 18, 22, 25, 26, 27, 34, 38, 46, 49, 50, 54, 58, 62, 74, 81, 82, 86, 94, 98, 106, 118, 121, 122, 125, 134, 142, 146, 158, 162, 166, 169, 178, 194, 202, 206, 214, 218, 226, 242, 243, 250, 254, 262, 274, 278, 289, 298, 302, 314, 326, 334, 338, 343
OFFSET
1,1
COMMENTS
Nonprime k such that the multiplicative group modulo k is cyclic. Nonprime terms of A033948 (omitting the initial term 1). - Joerg Arndt, Aug 07 2011
a(n) has a primitive root for any n. - Arkadiusz Wesolowski, Sep 06 2012 [See, e.g., the Niven et al. reference. - Wolfdieter Lang, Jan 18 2017]
REFERENCES
Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, Theorem 2.41, p. 104.
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), relation (39.7-13) on page 779.
MATHEMATICA
lim = 500; t = {4}; Do[p = Prime[n]; k = 1; While[p^k <= lim, If[k > 1, AppendTo[t, p^k]]; If[2*p^k <= lim, AppendTo[t, 2*p^k]]; k++], {n, 2, PrimePi[lim/2]}]; Sort[t]; (* T. D. Noe, Sep 06 2012 *)
PROG
(PARI) for (n=2, 555, if ( isprime(n), next() ); if ( 1 == #(znstar(n)[3]), print1(n, ", ") ); ); /* Joerg Arndt, Aug 07 2011 */
CROSSREFS
Cf. A033948, A033949 (composites without primitive root). A279398.
Sequence in context: A337372 A317299 A236026 * A084759 A054395 A142863
KEYWORD
nonn
AUTHOR
Warren Breslow, Jul 21 2011
EXTENSIONS
More terms from Joerg Arndt, Aug 07 2011
Name corrected and augmented by Wolfdieter Lang, Jan 18 2017
STATUS
approved