%I #26 May 28 2018 03:42:31
%S 1,3,7,12,28,65,50,140,325,811,225,700,1950,4866,12762,1092,3675,
%T 11375,34062,89334,244588,5684,20384,68250,227080,714672,1956704,
%U 5574956,31572,119364,425880,1532790,5360040,17610336,50174604,148332645
%N Triangle read by rows: T(n,k) = number of pairs of partitions of n that have block distance k (n >= 2, 2 <= k <= n).
%H F. Ruskey and J. Woodcock, <a href="http://webhome.cs.uvic.ca/~ruskey/Publications/RandDist/RandDist.html">The Rand and block distances of pairs of set partitions</a>, Combinatorial algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
%H Frank Ruskey, Jennifer Woodcock and Yuji Yamauchi, <a href="https://doi.org/10.1016/j.jda.2012.04.003">Counting and computing the Rand and block distances of pairs of set partitions</a>, Journal of Discrete Algorithms, Volume 16, October 2012, Pages 236-248. - From _N. J. A. Sloane_, Oct 03 2012
%e Triangle begins
%e 1
%e 3 7
%e 12 28 65
%e 50 140 325 811
%e 225 700 1950 4866 12762
%e 1092 3675 11375 34062 89334 244588
%e 5684 20384 68250 227080 714672 1956704 5574956
%e 31572 119364 425880 1532790 5360040 17610336 50174604 148332645
%e ...
%Y Row sums give A193274.
%Y Column k=2 gives A105479.
%Y T(n,n) gives A152525.
%K nonn,tabl
%O 2,2
%A _N. J. A. Sloane_, Aug 26 2011