OFFSET
0,5
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..280
FORMULA
G.f. satisfies: A(x/A(x)) = 1 + (1+x)*x/A(x).
G.f. satisfies: A(x) = 1+x + x*Series_Reversion(x/A(x)).
a(n) = [x^(n-2)] A(x)^(n-1)/(n-1) for n>=2 with a(0)=a(1)=1.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 5*x^5 + 15*x^6 + 51*x^7 +...
where
(A(x)-1-x)/x = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 51*x^6 + 191*x^7 +...
A((A(x)-1-x)/x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 51*x^5 + 191*x^6 +...
A(x)*A(x/A(x)) = 1 + 2*x + 2*x^2 + x^3 + 2*x^4 + 5*x^5 + 15*x^6 + 51*x^7 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n-1, A=1+x+x*serreverse(x/A+O(x^n))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 21 2011
STATUS
approved