login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193257 Floor((10^n)/(log(10^n) - 1)). 3
7, 27, 169, 1217, 9512, 78030, 661458, 5740303, 50701542, 454011971, 4110416300, 37550193649, 345618860220, 3201414635780, 29816233849000, 279007258230819, 2621647966812031, 24723998785919976, 233922961602470390, 2219671974013732243 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

lim n -> infinity (log(n) - n/pi(n)) = 1, where pi(n) is the prime counting function.

REFERENCES

A. M. Legendre, Essai sur la Théorie des Nombres, Paris: Duprat, 1808.

LINKS

Arkadiusz Wesolowski, Table of n, a(n) for n = 1..200

Eric Weisstein's World of Mathematics, Legendre's Constant

Eric Weisstein's World of Mathematics, Prime Counting Function

Eric Weisstein's World of Mathematics, Prime Number Theorem

FORMULA

a(n) = floor((10^n)/(log(10^n) - 1)).

EXAMPLE

a(2) = 27 because (10^2)/(log(10^2) - 1) = 27.7379415786....

MATHEMATICA

Table[Floor[10^n/(Log[10^n] - 1)], {n, 20}]

PROG

(Magma) [Floor(10^n/(Log(10^n)-1)) : n in [1..20]]

(PARI) for(n=1, 20, print1(floor(10^n/(log(10^n)-1)), ", "))

(PARI) a(n)=10^n\(n*log(10)-1) \\ Charles R Greathouse IV, Jul 30 2011

CROSSREFS

Another version of A226744.

Cf. A058289, A006880, A057834, A000720.

Sequence in context: A202519 A192250 A035081 * A330621 A173193 A196323

Adjacent sequences: A193254 A193255 A193256 * A193258 A193259 A193260

KEYWORD

nonn

AUTHOR

Arkadiusz Wesolowski, Jul 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 20:13 EST 2023. Contains 359905 sequences. (Running on oeis4.)