login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193236 Expansion of g.f.: ( Sum_{n>=0} (-3)^n*(2*n+1)*x^(n*(n+1)/2) )^(-1/3). 6
1, 3, 18, 111, 765, 5481, 40581, 306099, 2342034, 18108270, 141176412, 1108011312, 8744143401, 69325981191, 551800999215, 4406974587918, 35300439813735, 283495238613855, 2281964065354899, 18406084773140820, 148734744069134439 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare to the q-series identity:

eta(x)^3 = Sum_{n>=0} (-1)^n*(2*n+1) * x^(n*(n+1)/2),

where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

EXAMPLE

G.f.: A(x) = 1 + 3*x + 18*x^2 + 111*x^3 + 765*x^4 + 5481*x^5 +...

where

1/A(x)^3 = 1 - 9*x + 45*x^3 - 189*x^6 + 729*x^10 - 2673*x^15 + 9477*x^21 - 32805*x^28 +...+ (-3)^n*(2*n+1)*x^(n*(n+1)/2) +...

MAPLE

seq(coeff(series(add((2*n+1)*(-3)^n*x^(n*(n+1)/2), n = 0..40)^(-1/3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 05 2019

MATHEMATICA

CoefficientList[Series[(Sum[(2n+1)*(-3)^n*x^(n(n+1)/2), {n, 0, 40}] )^(-1/3), {x, 0, 30}], x] (* G. C. Greubel, Nov 05 2019 *)

PROG

(PARI) {a(n)=local(S=sum(m=0, sqrtint(2*n), (-3)^m*(2*m+1)*x^(m*(m+1)/2))+x*O(x^n)); polcoeff(S^(-1/3), n)}

(Sage) [( (sum((2*n+1)*(-3)^n*x^(n*(n+1)/2) for n in (0..40)) )^(-1/3) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Nov 05 2019

CROSSREFS

Cf. A111984, A111983, A193237.

Sequence in context: A134092 A000274 A207321 * A215047 A213099 A199259

Adjacent sequences:  A193233 A193234 A193235 * A193237 A193238 A193239

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 29 04:46 EST 2020. Contains 331335 sequences. (Running on oeis4.)