login
A193178
Decimal expansion of (1/2)^(1/2)^(1/2)^(1/2).
1
6, 5, 4, 0, 4, 0, 8, 6, 0, 0, 4, 2, 0, 6, 9, 4, 7, 1, 9, 8, 2, 2, 2, 8, 2, 9, 0, 0, 5, 3, 3, 9, 3, 1, 4, 5, 8, 0, 8, 6, 6, 7, 5, 9, 3, 4, 3, 5, 6, 5, 3, 8, 9, 7, 5, 6, 3, 7, 0, 3, 7, 5, 3, 8, 8, 0, 0, 3, 2, 5, 8, 3, 0, 5, 5, 0, 0, 1, 8, 9, 3, 9, 4, 8, 7, 7, 0, 0, 1, 6, 7, 5, 8, 7, 6, 1, 5, 5, 2, 8, 3, 4, 9, 8, 6, 2, 7, 2, 8, 2, 0, 8, 8, 2, 8, 4, 2, 2, 6, 3, 9, 8, 8, 1, 7, 6, 7, 0, 6, 5, 8, 8, 4, 1, 8, 3, 2, 0, 6, 3, 6, 9, 3, 7, 4, 2, 8, 8, 3, 4, 4, 4, 0, 2, 9, 9, 3, 4, 4, 3, 2, 0, 7, 2, 9, 1, 6, 9, 6, 9, 8, 8, 7, 0, 0, 7, 8, 6, 4, 4, 0, 0, 5, 3, 5, 8, 0, 0, 0, 2, 0, 1, 2, 6, 5, 6, 8, 5, 5, 3
OFFSET
0,1
COMMENTS
A weak form of Schanuel's Conjecture implies that (1/2)^(1/2)^(1/2)^(1/2) is transcendental--see Marques and Sondow (2012).
LINKS
D. Marques and J. Sondow, The Schanuel Subset Conjecture implies Gelfond's Power Tower Conjecture, arXiv:1212.6931 [math.NT], 2012-2013.
EXAMPLE
0.6540408600420694719822282900533931458086675934356538975637037538800325830550...
MATHEMATICA
RealDigits[ (1/2)^(1/2)^(1/2)^(1/2), 10, 200] [[1]]
CROSSREFS
Cf. A220782.
Sequence in context: A306712 A109063 A110390 * A084448 A256596 A173431
KEYWORD
nonn,cons
AUTHOR
Jonathan Sondow, Dec 31 2012
STATUS
approved