%I #35 May 22 2020 16:20:42
%S 1,2,1,3,2,1,4,3,2,2,1,5,4,3,3,2,2,1,6,5,4,4,3,3,2,3,2,2,1,7,6,5,5,4,
%T 4,3,4,3,3,2,3,2,2,1,8,7,6,6,5,5,4,5,4,4,3,4,3,3,2,4,3,3,2,2,2,1,9,8,
%U 7,7,6,6,5,6,5,5,4,5,4,4,3,5,4,4,3,3,3,2,4,3,3,2,3,2,2,1,10,9,8,8,7,7,6,7,6
%N Triangle in which n-th row lists the number of elements in lexicographically ordered partitions of n, A026791.
%C This sequence first differs from A049085 in the partitions of 6 (at flattened index 22):
%C 6, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1 (this sequence);
%C 6, 5, 4, 3, 4, 3, 2, 3, 2, 2, 1 (A049085).
%C - _Jason Kimberley_, Oct 27 2011
%C Rows sums give A006128, n >= 1. - _Omar E. Pol_, Dec 06 2011
%C The name is correct if the partitions are read in reverse, so that the parts are weakly increasing. The version for non-reversed partitions is A049085.
%H Alois P. Heinz, <a href="/A193173/b193173.txt">Rows n = 1..26, flattened</a>
%e The lexicographically ordered partitions of 3 are [[1, 1, 1], [1, 2], [3]], thus row 3 has 3, 2, 1.
%e Triangle begins:
%e 1;
%e 2, 1;
%e 3, 2, 1;
%e 4, 3, 2, 2, 1;
%e 5, 4, 3, 3, 2, 2, 1;
%e 6, 5, 4, 4, 3, 3, 2, 3, 2, 2, 1;
%e ...
%p T:= proc(n) local b, ll;
%p b:= proc(n,l)
%p if n=0 then ll:= ll, nops(l)
%p else seq(b(n-i, [l[], i]), i=`if`(l=[], 1, l[-1])..n) fi
%p end;
%p ll:= NULL; b(n, []); ll
%p end:
%p seq(T(n), n=1..11);
%t lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
%t Table[Length/@Sort[Reverse/@IntegerPartitions[n],lexsort],{n,0,10}] (* _Gus Wiseman_, May 22 2020 *)
%Y Row lengths are A000041.
%Y Partition lengths of A026791.
%Y The version ignoring length is A036043.
%Y The version for non-reversed partitions is A049085.
%Y The maxima of these partitions are A194546.
%Y Reversed partitions in Abramowitz-Stegun order are A036036.
%Y Reverse-lexicographically ordered partitions are A080577.
%Y Cf. A001222, A115623, A129129, A185974, A193073, A211992, A228531, A334302, A334434, A334437, A334440, A334441.
%K nonn,look,tabf
%O 1,2
%A _Alois P. Heinz_, Jul 17 2011