login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193114 G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n^2) * A(x)^(n+1). 5
1, 1, 2, 5, 13, 37, 111, 345, 1103, 3604, 11977, 40356, 137543, 473317, 1642258, 5738828, 20179338, 71346433, 253485527, 904536366, 3240418665, 11649734335, 42017535527, 151992797355, 551298507620, 2004602732825, 7305747551718, 26682235709115 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..27.

FORMULA

The g.f. A(x) satisfies:

(1) 1 = Sum_{n>=0} (-x)^n*A(x)^(n+1) * Product_{k=1..n} (1 + x^(4*k-3)*A(x))/(1 + x^(4*k-1)*A(x));

(2) 1 = A(x)/(1+ x*A(x)/(1- x*(1-x^2)*A(x)/(1+ x^5*A(x)/(1- x^3*(1-x^4)*A(x)/(1+ x^9*A(x)/(1- x^5*(1-x^6)*A(x)/(1+ x^13*A(x)/(1- x^7*(1-x^8)*A(x)/(1- ...))))))))) (continued fraction);

due to identities of a partial elliptic theta function.

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 37*x^5 + 111*x^6 +...

which satisfies:

1 = A(x) - x*A(x)^2 + x^4*A(x)^3 - x^9*A(x)^4 + x^16*A(x)^5 -+...

Related expansions.

A(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 40*x^4 + 120*x^5 + 373*x^6 +...

A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 87*x^4 + 276*x^5 + 893*x^6 +...

PROG

(PARI) {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(#A)+1, (-x)^(m^2)*Ser(A)^(m+1)), #A-1)); if(n<0, 0, A[n+1])}

CROSSREFS

Cf. A193111, A193112, A193113, A193115, A193116.

Sequence in context: A036249 A126031 A151416 * A114509 A003080 A149854

Adjacent sequences:  A193111 A193112 A193113 * A193115 A193116 A193117

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 16 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 15 16:25 EST 2019. Contains 320136 sequences. (Running on oeis4.)