login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193095 Number of times n can be written as concatenation of exactly two nonzero squares in decimal representation. 8
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,165

COMMENTS

a(A193096(n))=0; a(A191933(n))>0; a(A193097(n))=1; a(A192993(n))>1; a(A038670(n))=2.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

EXAMPLE

a(164) = 2, A191933(15) = A192993(1) = 164: 1'64 == 16'4.

PROG

(Haskell)

a193095 n = sum $ map c [1..(length $ show n) - 1] where

   c k | head ys == '0' = 0

       | otherwise      = a010052 (read xs) * a010052 (read ys) where

       (xs, ys) = splitAt k $ show n

(PARI) A193095(n) = sum( t=1, #Str(n)-1, apply(issquare, divrem(n, 10^t))==[1, 1]~ && n%10^t>=10^(t-1))  \\ - M. F. Hasler, Jul 24 2011

(PARI) A193095(n)={ my(c, p=1); while( n>p*=10, n%p*10>=p||next; issquare(n%p)||next; issquare(n\p) && c++); c}  \\ - M. F. Hasler, Jul 24 2011

CROSSREFS

Cf. A010052.

Sequence in context: A294937 A045701 A277156 * A011725 A037808 A023973

Adjacent sequences:  A193092 A193093 A193094 * A193096 A193097 A193098

KEYWORD

nonn,base

AUTHOR

Reinhard Zumkeller, Jul 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 10:13 EST 2019. Contains 320250 sequences. (Running on oeis4.)