

A193090


Digital roots of the nonzero pentagonal numbers.


1



1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8, 6, 7, 2, 9, 1, 5, 3, 4, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This is a periodic sequence with period 9 and cycle 1,5,3,4,8,6,7,2,9  which are also the coefficients of x in the numerator of the generating function.
Note that the cycle 1,5,3,4,8,6,7,2,9 is a permutation of the first 9 natural numbers A000027.  Omar E. Pol, Aug 15 2011
This sequence is the same as A002450(n+1) mod 9, except with a value of 9 where that would return 0.  Joe Slater, Mar 04 2018


LINKS

Table of n, a(n) for n=1..86.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1).


FORMULA

a(n) = a(n9).
As the sum of the terms contained in each cycle is 45, they also satisfy the eighth order inhomogeneous recurrence a(n)=45a(n1)a(n2)a(n3)a(n4)a(n5)a(n6)a(n7)a(n8).
a(n) = cos(8n Pi/9) (1 + 2 cos(2n Pi/9))(1 + 2 cos(2n Pi/3)) + (n + 7n^3 + 5n^4 + n^5 + 5n^6 + 4n^7 + 5n^8) mod 9.
G.f.: x(1 + 5x + 3x^2 + 4x^3 + 8x^4 + 6x^5 + 7x^6 + 2x^7 + 9x^8)/((1x)(1 + x + x^2)(1 + x^3 + x^6)).
a(n) = A010888(A000326(n)).  Jonathan Vos Post, Aug 15 2011
a(n) = 9((8*(4^n1)/3) mod 9).  Joe Slater, Mar 04 2018


EXAMPLE

The sixth nonzero pentagonal number is A000326(6) = 51, which has digital root 5 + 1 = 6. Hence a(6) = 6.


MATHEMATICA

DigitalRoot[n_]:=FixedPoint[Plus@@IntegerDigits[#]&, n]; DigitalRoot[1/2 # (3#1)]&/@Range[90]
PadRight[{}, 120, {1, 5, 3, 4, 8, 6, 7, 2, 9}] (* Harvey P. Dale, Sep 12 2017 *)


PROG

(PARI) a(n)=[9, 1, 5, 3, 4, 8, 6, 7, 2][n%9+1] \\ Charles R Greathouse IV, Oct 04 2012


CROSSREFS

Cf. A000326, A002450, A010888.
Sequence in context: A198563 A111889 A004494 * A004162 A319053 A109681
Adjacent sequences: A193087 A193088 A193089 * A193091 A193092 A193093


KEYWORD

nonn,easy,base


AUTHOR

Ant King, Aug 15 2011


STATUS

approved



