login
A193076
Decimal expansion of the coefficient of x in the reduction of phi^x by x^2->x+1, where phi=(1+sqrt(5))/2 is the golden ratio (A001622).
2
6, 4, 2, 0, 7, 1, 0, 9, 8, 8, 0, 3, 6, 3, 7, 5, 7, 2, 2, 6, 6, 3, 4, 8, 4, 4, 9, 3, 1, 8, 3, 9, 6, 9, 4, 3, 3, 2, 2, 0, 8, 2, 5, 3, 9, 2, 8, 3, 1, 8, 6, 9, 4, 0, 5, 9, 1, 6, 5, 8, 2, 9, 6, 1, 5, 7, 0, 9, 5, 8, 3, 5, 1, 0, 6, 7, 8, 9, 3, 9, 4, 9, 9, 7, 6, 4, 1, 8, 3, 3, 9, 7, 8, 4, 5, 2, 2, 8, 9, 1
OFFSET
0,1
COMMENTS
Reduction of a function f(x) by a substitution q(x)->s(x) is introduced at A193010.
FORMULA
From Amiram Eldar, Jan 19 2022: (Start)
Equals Sum_{k>=0} log(phi)^k*Fibonacci(k)/k!.
Equals (phi^phi - phi^(1-phi))/sqrt(5). (End)
EXAMPLE
0.6420710988036375722663484493183969433220...
MATHEMATICA
t = GoldenRatio
f[x_] := t^(x); r[n_] := Fibonacci[n];
c[n_] := SeriesCoefficient[Series[f[x], {x, 0, n}], n]
u1 = N[Sum[c[n]*r[n], {n, 0, 100}], 100]
RealDigits[u1, 10]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Jul 15 2011
STATUS
approved