

A193047


Coefficient of x in the reduction by x^2>x+1 of the polynomial p(n,x) defined at Comments.


1



0, 1, 2, 19, 102, 377, 1104, 2777, 6282, 13155, 25998, 49153, 89792, 159681, 278034, 476131, 804790, 1346457, 2234768, 3686201, 6051290, 9897491, 16143262, 26275009, 42698112, 69304897, 112393634, 182155507, 295080582, 477850745
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

The titular polynomials are defined recursively: p(n,x)=x*p(n1,x)+n^4, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2>x+1, see A192232 and A192744.


LINKS

Table of n, a(n) for n=0..29.
Index entries for linear recurrences with constant coefficients, signature (6,14,15,5,4,4,1).


FORMULA

a(n)=6*a(n1)14*a(n2)+15*a(n3)5*a(n4)4*a(n5)+4*a(n6)a(n7).
G.f.: x*(1+4*x21*x^2x^36*x^4+x^5) / ( (x^2+x1)*(x1)^5 ).  R. J. Mathar, May 12 2014


MATHEMATICA

(See A193046.)


CROSSREFS

Cf. A192232, A192744, A192951, A193046.
Sequence in context: A034572 A041393 A107123 * A055875 A089659 A240124
Adjacent sequences: A193044 A193045 A193046 * A193048 A193049 A193050


KEYWORD

nonn


AUTHOR

Clark Kimberling, Jul 15 2011


STATUS

approved



