login
A193045
Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.
1
0, 1, 1, 3, 8, 21, 49, 105, 210, 399, 729, 1293, 2242, 3821, 6427, 10703, 17690, 29073, 47579, 77621, 126340, 205291, 333171, 540233, 875428, 1417961, 2295989, 3716875, 6016140, 9736669, 15756869, 25498033, 41259862, 66763351, 108029197
OFFSET
0,4
COMMENTS
The titular polynomials are defined recursively: p(n,x)=x*p(n-1,x)+n(-1+n^2)/6, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.
FORMULA
a(n)=5*a(n-1)-9*a(n-2)+6*a(n-3)+a(n-4)-3*a(n-5)+a(n-6).
G.f.: -x*(1-4*x+7*x^2-4*x^3+x^4) / ( (x^2+x-1)*(x-1)^4 ). - R. J. Mathar, May 12 2014
MATHEMATICA
(See A193044.)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 15 2011
STATUS
approved