login
A193006
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.
2
1, 0, 8, 27, 72, 160, 323, 610, 1102, 1929, 3302, 5562, 9261, 15292, 25100, 41023, 66844, 108684, 176447, 286158, 463746, 751165, 1216298, 1968982, 3186937, 5157720, 8346608, 13506435, 21855312, 35364184, 57222107, 92589082, 149814166
OFFSET
0,3
COMMENTS
The titular polynomials are defined recursively: p(n,x)=x*p(n-1,x)-1+n^3, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.
FORMULA
a(n)=4*a(n-1)-5*a(n-2)+a(n-3)+2*a(n-4)-a(n-5).
G.f.: (2*x^4-6*x^3+13*x^2-4*x+1)/((x-1)^3*(x^2+x-1)). [Colin Barker, Nov 12 2012]
MATHEMATICA
q = x^2; s = x + 1; z = 40;
p[0, x] := 1;
p[n_, x_] := x*p[n - 1, x] + n^3 - 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A193006 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A193007 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 14 2011
STATUS
approved