This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192958 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments. 3
 1, -1, 3, 7, 17, 33, 61, 107, 183, 307, 509, 837, 1369, 2231, 3627, 5887, 9545, 15465, 25045, 40547, 65631, 106219, 171893, 278157, 450097, 728303, 1178451, 1906807, 3085313, 4992177, 8077549, 13069787, 21147399, 34217251, 55364717, 89582037 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The titular polynomials are defined recursively:  p(n,x)=x*p(n-1,x)-2+n^2, with p(0,x)=1.  For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744. LINKS Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1). FORMULA a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4). G.f.: ( -1+4*x-8*x^2+3*x^3 ) / ( (x^2+x-1)*(x-1)^2 ). - R. J. Mathar, May 09 2014 a(n) - 2*a(n-1) +a(n-2) = A022089(n-3). - R. J. Mathar, May 09 2014 MATHEMATICA q = x^2; s = x + 1; z = 40; p[0, x] := 1; p[n_, x_] := x*p[n - 1, x] + n^2 - 2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 +        PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]   (* A192958 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]   (* A192959 *) CROSSREFS Cf. A192232, A192744, A192951, A192959. Sequence in context: A233930 A176690 A168582 * A219293 A178521 A034482 Adjacent sequences:  A192955 A192956 A192957 * A192959 A192960 A192961 KEYWORD sign AUTHOR Clark Kimberling, Jul 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 12:15 EDT 2017. Contains 290720 sequences.