The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192939 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x)=(x+2)(x+4)...(x+2n). 2
 1, 2, 9, 61, 546, 6043, 79475, 1209160, 20873685, 402896615, 8595041400, 200773098515, 5095839723205, 139624739872970, 4107177047046645, 129087781738773385, 4316962772836390050, 153048896045632212175, 5733602882337419294975 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. LINKS FORMULA Conjecture: a(n) +(-4*n+1)*a(n-1) +(4*n^2-6*n+1)*a(n-2)=0. - R. J. Mathar, May 08 2014 EXAMPLE The first four polynomials p(n,x) and their reductions are as follows: p(0,x)=1 p(1,x)=x+2 -> x+2 p(2,x)=(x+2)(x+4) -> 9+7x p(3,x)=(x+2)(x+4)(x+6) -> 61+58x From these, read A192939=(1,2,9,61,...) and A192940=(0,1,7,58,...) MATHEMATICA q = x^2; s = x + 1; z = 26; p[0, x] := 1; p[n_, x_] := (x + 2 n)*p[n - 1, x]; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 +        PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]   (* A192939 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]   (* A192940 *) CROSSREFS Cf. A192232, A192744, A192940. Sequence in context: A207649 A289713 A053983 * A107883 A088182 A006155 Adjacent sequences:  A192936 A192937 A192938 * A192940 A192941 A192942 KEYWORD nonn AUTHOR Clark Kimberling, Jul 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 18:14 EST 2020. Contains 332005 sequences. (Running on oeis4.)