login
Number of meanders of order n, with 1-1 cut.
3

%I #44 Dec 15 2015 17:22:33

%S 0,0,4,24,152,1056,7884,62336,516060,4435888,39338456,358164768,

%T 3335087752,31663393880,305740631660,2996450625216,29756512979124,

%U 298991371001192,3036071594865808,31123847225593944,321822051245586716,3353854189297573504,35203483037473883368,371948773494408980616,3953755503217954761364

%N Number of meanders of order n, with 1-1 cut.

%D S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algebrique. Laboratoire Bordelais de Recherche Informatique, Universite Bordeaux I, 1991, pp. 287-303.

%H Iwan Jensen, <a href="http://arxiv.org/abs/cond-mat/9910313">Enumeration of plane meander</a>, arXiv:cond-mat/9910313v1 [cond-mat.stat-mech], 1999.

%H I. Jensen, <a href="http://dx.doi.org/10.1088/0305-4470/33/34/301">A transfer matrix approach to the enumeration of plane meanders</a>, J. Phys. A 33, 5953-5963 (2000).

%H A. Panayotopoulos and P. Tsikouras, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Panayotopoulos/panayo4.html">Meanders and Motzkin Words</a>, J. Integer Seqs., Vol. 7, 2004.

%H A. Panayotopoulos and P. Vlamos, <a href="http://dx.doi.org/10.1007/978-3-642-33412-2_49">Cutting Degree of Meanders</a>, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From _N. J. A. Sloane_, Dec 29 2012

%K nonn

%O 1,3

%A _Panayotis Vlamos_ and _Antonios Panayotopoulos_, Aug 03 2011