login
A192907
Coefficient of x in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.
3
0, 1, 4, 12, 37, 116, 364, 1141, 3576, 11208, 35129, 110104, 345096, 1081625, 3390108, 10625524, 33303293, 104381612, 327160468, 1025410221, 3213915568, 10073288784, 31572437041, 98956636912
OFFSET
0,3
COMMENTS
The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x), with p(0,x) = 1, p(1,x) = x + 1.
FORMULA
a(n) = 3*a(n-1) + a(n-3) + a(n-4).
G.f. x*(1+x)/( 1-3*x-x^3-x^4 ). - R. J. Mathar, Jul 13 2011
MATHEMATICA
(See A192906.)
LinearRecurrence[{3, 0, 1, 1}, {0, 1, 4, 12}, 30] (* G. C. Greubel, Jan 11 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1+x)/(1-3*x-x^3-x^4))) \\ G. C. Greubel, Jan 11 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1+x)/(1-3*x-x^3-x^4) )); // G. C. Greubel, Jan 11 2019
(Sage) (x*(1+x)/(1-3*x-x^3-x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 11 2019
(GAP) a:=[0, 1, 4, 12];; for n in [5..30] do a[n]:=3*a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 11 2019
CROSSREFS
Cf. A192906.
Sequence in context: A099098 A019481 A019480 * A047088 A280891 A362886
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 12 2011
STATUS
approved