login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192904 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments. 7

%I #19 Sep 08 2022 08:45:58

%S 1,0,1,5,16,49,153,480,1505,4717,14784,46337,145233,455200,1426721,

%T 4471733,14015632,43928817,137684905,431542080,1352570689,4239325789,

%U 13287204352,41645725825,130529073953,409113752000,1282274186177

%N Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.

%C The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x), with p(0,x) = 1, p(1,x) = x. The resulting sequence typifies a general class which we shall describe here. Suppose that u,v,a,b,c,d,e,f are numbers used to define these polynomials:

%C ...

%C q(x) = x^2

%C s(x) = u*x + v

%C p(0,x) = a, p(1,x) = b*x + c

%C p(n,x) = d*(x^2)*p(n-1,x) + e*x*p(n-2,x) + f.

%C ...

%C We shall assume that u is not 0 and that {d,e} is not {0}. The reduction of p(n,x) by the repeated substitution q(x) -> s(x), as defined and described at A192232 and A192744, has the form h(n) + k(n)*x. The numerical sequences h and k are linear recurrence sequences, formally of order 5. The Mathematica program below, with first line deleted, shows initial terms and recurrence coefficients, which imply these properties:

%C (1) the recurrence coefficients depend only on u,v,d,e; the parameters a,b,c,f affect only the initial terms.

%C (2) if e=0 or v=0, the order of recurrence is <= 3;

%C (3) if e=0 and v=0, the recurrence coefficients are 1+d*u^2 and -d*u^2 (cf. similar results at A192872).

%C ...

%C Examples:

%C u v a b c d e f... seq h.....seq k

%C 1 1 1 1 1 1 0 0... A001906..A001519

%C 1 1 1 1 0 0 1 0... A103609..A193609

%C 1 1 1 1 0 1 1 0... A192904..A192905

%C 1 1 1 1 1 1 0 0... A001519..A001906

%C 1 1 1 1 1 1 1 0... A192907..A192907

%C 1 1 1 1 1 1 0 1... A192908..A069403

%C 1 1 1 1 1 1 1 1... A192909..A192910

%C The terms of these sequences involve Fibonacci numbers, F(n)=A000045(n); e.g.,

%C A001906: even-indexed F(n)

%C A001519: odd-indexed F(n)

%C A103609: (1,1,1,1,2,2,3,3,5,5,8,8,...)

%H G. C. Greubel, <a href="/A192904/b192904.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,1,1).

%F a(n) = 3*a(n-1) + a(n-3) + a(n-4).

%F G.f.: (1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4). - _Colin Barker_, Aug 31 2012

%e The first six polynomials and reductions:

%e 1 -> 1

%e x -> x

%e x + x^3 -> 1 + 3*x

%e x^2 + x^3 + x^5 -> 5 + 8*x

%e x^2 + 2*x^4 + x^5 + x^7 -> 16 + 25*x

%e x^3 + 2*x^4 + 3*x^6 + x^7 + x^9 -> 49 + 79*x, so that

%e A192904 = (1,0,1,5,16,49,...) and

%e A192905 = (0,1,3,8,25,79,...)

%t (* To obtain general results, delete the next line. *)

%t u = 1; v = 1; a = 1; b = 1; c = 0; d = 1; e = 1; f = 0;

%t q = x^2; s = u*x + v; z = 24;

%t p[0, x_] := a; p[1, x_] := b*x + c;

%t p[n_, x_] := d*(x^2)*p[n - 1, x] + e*x*p[n - 2, x] + f;

%t Table[Expand[p[n, x]], {n, 0, 8}]

%t reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]

%t t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];

%t u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192904 *)

%t u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192905 *)

%t Simplify[FindLinearRecurrence[u0]] (* recurrence for 0-sequence *)

%t Simplify[FindLinearRecurrence[u1]] (* recurrence for 1-sequence *)

%t LinearRecurrence[{3,0,1,1}, {1,0,1,5}, 40] (* _G. C. Greubel_, Jan 10 2019 *)

%o (PARI) my(x='x+O('x^40)); Vec((1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4)) \\ _G. C. Greubel_, Jan 10 2019

%o (Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4) )); // _G. C. Greubel_, Jan 10 2019

%o (Sage) ((1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Jan 10 2019

%o (GAP) a:=[1,0,1,5];; for n in [5..40] do a[n]:=3*a[n-1]+a[n-3]+a[n-4]; od; a; # _G. C. Greubel_, Jan 10 2019

%Y Cf. A192232, A192744, A192905, A192872.

%K nonn,easy

%O 0,4

%A _Clark Kimberling_, Jul 12 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)