login
A192850
Molecular topological indices of the web graphs.
1
46, 184, 414, 832, 1390, 2232, 3262, 4672, 6318, 8440, 10846, 13824, 17134, 21112, 25470, 30592, 36142, 42552, 49438, 57280, 65646, 75064, 85054, 96192, 107950, 120952, 134622, 149632, 165358, 182520
OFFSET
1,1
COMMENTS
Web graphs are defined for n>=3; extended to n=1 using closed form.
LINKS
Eric Weisstein's World of Mathematics, Molecular Topological Index
FORMULA
a(n) = n*(6*n^2+22*n+3*((-1)^n+7)).
G.f.: 2*x*(x^4+2*x^3+46*x+23)/((x-1)^4*(x+1)^2). - Colin Barker, Aug 07 2012
E.g.f.: x*((49 +40*x +6*x^2)*exp(x) - 3*exp(-x)). - G. C. Greubel, Jan 05 2018
MATHEMATICA
Table[n*(6*n^2+22*n+3*((-1)^n+7)), {n, 1, 40}] (* G. C. Greubel, Jan 05 2019 *)
PROG
(PARI) vector(40, n, n*(6*n^2+22*n+3*((-1)^n+7))) \\ G. C. Greubel, Jan 05 2019
(Magma) [n*(6*n^2+22*n+3*((-1)^n+7)): n in [1..40]]; // G. C. Greubel, Jan 05 2019
(Sage) [n*(6*n^2+22*n+3*((-1)^n+7)) for n in (1..40)] # G. C. Greubel, Jan 05 2019
(GAP) List([1..40], n -> n*(6*n^2+22*n+3*((-1)^n+7))); # G. C. Greubel, Jan 05 2019
CROSSREFS
Sequence in context: A251467 A251460 A235767 * A211334 A160334 A235550
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jul 11 2011
STATUS
approved