login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192846 Molecular topological indices of the sunlet graphs. 1
14, 56, 126, 256, 430, 696, 1022, 1472, 1998, 2680, 3454, 4416, 5486, 6776, 8190, 9856, 11662, 13752, 15998, 18560, 21294, 24376, 27646, 31296, 35150, 39416, 43902, 48832, 53998, 59640 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Sunlet graphs are defined for n>=3; extended to n=1 using closed form.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Molecular Topological Index

Eric Weisstein's World of Mathematics, Sun Graph

Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).

FORMULA

a(n) = n*(2*n*(n+3)+(-1)^n+7).

G.f.: 2*x*(x^4+2*x^3+14*x+7)/((x-1)^4*(x+1)^2). - Colin Barker, Aug 07 2012

E.g.f.: x*((15 + 12*x + 2*x^2)*exp(x) - exp(-x)). - G. C. Greubel, Jan 05 2019

MATHEMATICA

Table[n*(2*n*(n+3)+(-1)^n+7), {n, 1, 40}] (* G. C. Greubel, Jan 05 2019 *)

PROG

(PARI) vector(40, n, n*(2*n*(n+3)+(-1)^n+7)) \\ G. C. Greubel, Jan 05 2019

(MAGMA) [n*(2*n*(n+3)+(-1)^n+7): n in [1..40]]; // G. C. Greubel, Jan 05 2019

(Sage) [n*(2*n*(n+3)+(-1)^n+7) for n in (1..40)] # G. C. Greubel, Jan 05 2019

(GAP) List([1..40], n -> n*(2*n*(n+3)+(-1)^n+7)); # G. C. Greubel, Jan 05 2019

CROSSREFS

Sequence in context: A022285 A100157 A144555 * A212347 A115129 A281200

Adjacent sequences:  A192843 A192844 A192845 * A192847 A192848 A192849

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein, Jul 11 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 13:41 EST 2021. Contains 341762 sequences. (Running on oeis4.)