The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192802 Coefficient of x in the reduction of the polynomial  (x+2)^n by x^3->x^2+x+1. 2
 0, 1, 4, 13, 42, 143, 514, 1915, 7268, 27805, 106680, 409633, 1573086, 6040587, 23193782, 89051615, 341901032, 1312664601, 5039704492, 19348873781, 74285859698, 285204660583, 1094982340202, 4203950929347, 16140172668812 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For discussions of polynomial reduction, see A192232 and A192744. LINKS Index entries for linear recurrences with constant coefficients, signature (7,-15,11). FORMULA a(n) = 7*a(n-1)-15*a(n-2)+11*a(n-3). G.f.: x*(3*x-1)/(11*x^3-15*x^2+7*x-1). [Colin Barker, Jul 27 2012] EXAMPLE The first five polynomials p(n,x) and their reductions: p(1,x)=1 -> 1 p(2,x)=x+2 -> x+2 p(3,x)=x^2+4x+4 -> x^2+1 p(4,x)=x^3+6x^2+12x+8 -> x^2+4x+4 p(5,x)=x^4+8x^3+24x^2+32x+16 -> 7x^2+13*x+9, so that A192798=(1,2,4,9,25,...), A192799=(0,1,4,13,42,...), A192800=(0,0,1,7,34,...). MATHEMATICA (See A192801.) LinearRecurrence[{7, -15, 11}, {0, 1, 4}, 30] (* Harvey P. Dale, Nov 05 2015 *) CROSSREFS Cf. A192744, A192232, A192801, A192803. Sequence in context: A070031 A082989 A267240 * A149425 A047144 A072307 Adjacent sequences:  A192799 A192800 A192801 * A192803 A192804 A192805 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jul 10 2011 EXTENSIONS Recurrence corrected by Colin Barker, Jul 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 12:19 EDT 2020. Contains 336276 sequences. (Running on oeis4.)