The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192777 Constant term in the reduction of the n-th Fibonacci polynomial by x^3->x^2+3x+1. See Comments. 6
 1, 0, 1, 1, 2, 8, 14, 55, 121, 392, 989, 2912, 7797, 22104, 60553, 169289, 467622, 1300888, 3603914, 10008543, 27755249, 77034176, 213702153, 593005504, 1645265209, 4565154816, 12666317073, 35144684065, 97512548090, 270561677224 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS For discussions of polynomial reduction, see A192232 and A192744. LINKS Index entries for linear recurrences with constant coefficients, signature (1,6,-1,-6,1,1). FORMULA a(n)=a(n-1)+6*a(n-2)-a(n-3)-6*a(n-4)+a(n-5)+a(n-6). G.f.: -x*(1-5*x^2+x^4-x+x^3) / ( (x^2-x-1)*(x^4+2*x^3-3*x^2-2*x+1) ). - R. J. Mathar, May 06 2014 EXAMPLE The first five polynomials p(n,x) and their reductions are as follows: F1(x)=1 -> 1 F2(x)=x -> x F3(x)=x^2+1 -> x^2+1 F4(x)=x^3+2x -> x^2+5x+1 F5(x)=x^4+3x^2+1 -> 7x^2+4x+2, so that A192777=(1,0,1,1,2,...), A192778=(0,1,0,5,4,...), A192779=(0,0,1,1,7,...) MATHEMATICA q = x^3; s = x^2 + 3 x + 1; z = 40; p[n_, x_] := Fibonacci[n, x]; Table[Expand[p[n, x]], {n, 1, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 +        PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]   (* A192777 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]   (* A192778 *) u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]   (* A192779 *) CROSSREFS Cf. A192744, A192232, A192616, A192772, A192778, A192779. Sequence in context: A111001 A055258 A277649 * A054981 A059449 A272930 Adjacent sequences:  A192774 A192775 A192776 * A192778 A192779 A192780 KEYWORD nonn AUTHOR Clark Kimberling, Jul 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 02:35 EDT 2020. Contains 337948 sequences. (Running on oeis4.)