login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192763 Symmetric square array read by antidiagonals up. 2
1, 2, 2, 1, -2, 1, 1, 2, 2, 1, 0, -2, -3, -2, 0, 1, 2, 1, 1, 2, 1, 0, -2, 2, 0, 2, -2, 0, 0, 2, -3, 1, 1, -3, 2, 0, 0, -2, 1, -2, -5, -2, 1, -2, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, -2, -3, 0, 2, 6, 2, 0, -3, -2, 0, 0, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 0, -1, -2, 2, -2, 1, -2, -7, -2, 1, -2, 2, -2, -1, 0, 2, -3, 1, -5, -3, 0, 0, -3, -5, 1, -3, 2, 0, 1, -2, 1, 0, 0, -2, 2, 0, 2, -2, 0, 0, 1, -2, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The main diagonal is the Mobius function times the natural numbers A055615 (conjecture). For k>1 the first row is the Mertens function + 2 = A002321 + 2 (conjecture). There is one recurrence for n=1 and k=1, and another recurrence for n>1 and k>1.

LINKS

Table of n, a(n) for n=1..120.

M. Granvik, Is this a recurrence for the Mertens function plus 2?

FORMULA

T(1,1)=1 or 3, T(1,2)=2, T(2,1)=2, T(1,k)=(-T(n,k-1)-Sum_(i=2)^(k-1) of T(i,k))/(k+1)+T(n,k-1), T(n,1)=(-T(n-1,k)-Sum_(i=2)^(n-1) of T(n,i))/(n+1)+T(n-1,k), n>=k: -Sum_(i=1)^(k-1) of T(n-i,k), n<k: -Sum_(i=1)^(n-1) of T(k-i,n).

EXAMPLE

The array starts:

1..2..1..1..0..1..0..0..0..1...

2.-2..2.-2..2.-2..2.-2..2.-2...

1..2.-3..1..2.-3..1..2.-3..1...

1.-2..1..0..1.-2..1..0..1.-2...

0..2..2..1.-5..0..2..2..1.-5...

1.-2.-3.-2..0..6..1.-2.-3.-2...

0..2..1..1..2..1.-7..0..2..1...

0.-2..2..0..2.-2..0..0..0.-2...

0..2.-3..1..1.-3..2..0..0..0...

1.-2..1.-2.-5.-2..1.-2..0..10...

MATHEMATICA

Clear[t]; t[1, 1] = 1; t[2, 1] = t[1, 2] = 2; t[n_Integer, k_Integer] := t[n, k] = Which[n == 1, (-t[n, k - 1] - Sum[t[i, k], {i, 2, k - 1}])/(k + 1) +  t[n, k - 1], k == 1, (-t[n - 1, k] - Sum[t[n, i], {i, 2, n - 1}])/(n + 1) + t[n - 1, k], n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], True, -Sum[t[k - i, n], {i, 1, n - 1}]];

nn = 12;

MatrixForm[Array[t, {nn, nn}]];

a = Flatten[Table[Reverse[Range[n]], {n, nn}]];

b = Flatten[Table[Range[n], {n, nn}]];

Table[t[a[[i]], b[[i]]], {i, 1, nn*(nn + 1)/2}]

(* Mats Granvik, Olivier Gérard, Jul 10 2011 *)

T[ n_, k_] := If[ n < 1 || k < 1, 0, If[ k > n, T[ k, n], T[n, k] = If[ k == 1, If[ n < 3, n, (-T[ n - 1, 1] - Sum[ T[ n, i], {i, 2, n - 1}]) / (n + 1) + T[ n - 1, 1]], If[ n > k, T[ k, Mod[ n, k, 1]], - Sum[ T[ n, i], {i, n - 1}]]]]]; (* Michael Somos, Jul 19 2011 *)

PROG

(Excel cell formula, European version, American version uses ", " instead of "; ")

=if(and(row()=1; column()=1); 1; if(or(and(row()=1; column()=2); and(row()=2; column()=1)); 2; if(row()=1; (-indirect(address(row(); column()-1))-sum(indirect(address(2; column())&":"&address(column()-1; column()))))/(column()+1)+indirect(address(row(); column()-1)); if(column()=1; (-indirect(address(row()-1; column()))-sum(indirect(address(row(); 2)&":"&address(row(); row()-1))))/(row()+1)+indirect(address(row()-1; column())); if(row()>=column(); -sum(indirect(address(row()-column()+1; column())&":"&address(row()-1; column()))); -sum(indirect(address(column()-row()+1; row())&":"&address(column()-1; row()))))))))

(PARI) {T(n, k) = if( n<1 || k<1, 0, if( k>n, T(k, n), if( k==1, if( n<3, n, (-T(n-1, 1) -sum( i=2, n-1, T(n, i))) / (n+1) + T(n-1, 1)), if( n>k, T(k, (n-1)%k+1), -sum( i=1, n-1, T(n, i))))))}; /* Michael Somos, Jul 19 2011 */

CROSSREFS

Cf. A002321, A055615.

Sequence in context: A071292 A088569 A246144 * A001285 A088424 A270642

Adjacent sequences:  A192760 A192761 A192762 * A192764 A192765 A192766

KEYWORD

sign,tabl

AUTHOR

Mats Granvik, Jul 09 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 22:32 EST 2017. Contains 295054 sequences.