login
A192748
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
2
0, 1, 4, 11, 24, 47, 86, 151, 258, 433, 718, 1181, 1932, 3149, 5120, 8311, 13476, 21835, 35362, 57251, 92670, 149981, 242714, 392761, 635544, 1028377, 1663996, 2692451, 4356528, 7049063, 11405678, 18454831, 29860602, 48315529, 78176230
OFFSET
1,3
COMMENTS
The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+3n for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744.
FORMULA
Conjecture: G.f.: -x^2*(1+x+x^2) / ( (x^2+x-1)*(x-1)^2 ), so the first differences are in A154691. - R. J. Mathar, May 04 2014
MATHEMATICA
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 3 n;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A154691 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192748 *)
CROSSREFS
Sequence in context: A057304 A001752 A160860 * A143075 A290707 A322618
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 09 2011
STATUS
approved