login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192729 G.f. satisfies: A(x) = 1/(1 - x*A(x)^2/(1 - x^2*A(x)^2/(1 - x^3*A(x)^2/(1 - x^4*A(x)^2/(1 - ...))))), a recursive continued fraction. 4
1, 1, 3, 13, 63, 329, 1808, 10299, 60271, 360198, 2189111, 13488379, 84066176, 529037390, 3357014851, 21455604032, 137993279809, 892448240335, 5800266701499, 37864046563210, 248158092634265, 1632254493141021, 10771183395497445 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..22.

Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction.

FORMULA

G.f. satisfies: A(x) = P(x)/Q(x) where

_ P(x) = Sum_{n>=0} x^(n*(n+1)) * (-A(x)^2)^n / Product(k=1..n} (1-x^k),

_ Q(x) = Sum_{n>=0} x^(n^2) * (-A(x)^2)^n / Product(k=1..n} (1-x^k),

due to Ramanujan's continued fraction identity.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 63*x^4 + 329*x^5 + 1808*x^6 +...

which satisfies A(x) = P(x)/Q(x) where

P(x) = 1 - x^2*A(x)^2/(1-x) + x^6*A(x)^4/((1-x)*(1-x^2)) - x^12*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^20*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...

Q(x) = 1 - x*A(x)^2/(1-x) + x^4*A(x)^4/((1-x)*(1-x^2)) - x^9*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^16*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...

Explicitly, the above series begin:

P(x) = 1 - x^2 - 3*x^3 - 10*x^4 - 42*x^5 - 202*x^6 - 1060*x^7 - 5862*x^8 - 33592*x^9 - 197585*x^10 - 1185867*x^11 - 7233049*x^12 +...

Q(x) = 1 - x - 3*x^2 - 10*x^3 - 41*x^4 - 198*x^5 - 1041*x^6 - 5766*x^7 - 33074*x^8 - 194674*x^9 - 1168988*x^10 - 7132869*x^11 - 44097821*x^12 +...

PROG

(PARI) /* As a recursive continued fraction: */

{a(n)=local(A=1+x, CF); for(i=1, n, CF=1+x; for(k=0, n, CF=1/(1-x^(n-k+1)*A^2*CF+x*O(x^n))); A=CF); polcoeff(A, n)}

(PARI) /* By Ramanujan's continued fraction identity: */

{a(n)=local(A=1+x, P, Q); for(i=1, n,

P=sum(m=0, sqrtint(n), x^(m*(m+1))/prod(k=1, m, 1-x^k)*(-A^2+x*O(x^n))^m);

Q=sum(m=0, sqrtint(n), x^(m^2)/prod(k=1, m, 1-x^k)*(-A^2+x*O(x^n))^m); A=P/Q); polcoeff(A, n)}

CROSSREFS

Cf. A005169, A192728, A192730.

Sequence in context: A000259 A007855 A193112 * A107097 A202837 A180111

Adjacent sequences:  A192726 A192727 A192728 * A192730 A192731 A192732

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 12:40 EST 2016. Contains 278735 sequences.