login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192729 G.f. satisfies: A(x) = 1/(1 - x*A(x)^2/(1 - x^2*A(x)^2/(1 - x^3*A(x)^2/(1 - x^4*A(x)^2/(1 - ...))))), a recursive continued fraction. 4
1, 1, 3, 13, 63, 329, 1808, 10299, 60271, 360198, 2189111, 13488379, 84066176, 529037390, 3357014851, 21455604032, 137993279809, 892448240335, 5800266701499, 37864046563210, 248158092634265, 1632254493141021, 10771183395497445 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..22.

Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction.

FORMULA

G.f. satisfies: A(x) = P(x)/Q(x) where

_ P(x) = Sum_{n>=0} x^(n*(n+1)) * (-A(x)^2)^n / Product(k=1..n} (1-x^k),

_ Q(x) = Sum_{n>=0} x^(n^2) * (-A(x)^2)^n / Product(k=1..n} (1-x^k),

due to Ramanujan's continued fraction identity.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 63*x^4 + 329*x^5 + 1808*x^6 +...

which satisfies A(x) = P(x)/Q(x) where

P(x) = 1 - x^2*A(x)^2/(1-x) + x^6*A(x)^4/((1-x)*(1-x^2)) - x^12*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^20*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...

Q(x) = 1 - x*A(x)^2/(1-x) + x^4*A(x)^4/((1-x)*(1-x^2)) - x^9*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^16*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...

Explicitly, the above series begin:

P(x) = 1 - x^2 - 3*x^3 - 10*x^4 - 42*x^5 - 202*x^6 - 1060*x^7 - 5862*x^8 - 33592*x^9 - 197585*x^10 - 1185867*x^11 - 7233049*x^12 +...

Q(x) = 1 - x - 3*x^2 - 10*x^3 - 41*x^4 - 198*x^5 - 1041*x^6 - 5766*x^7 - 33074*x^8 - 194674*x^9 - 1168988*x^10 - 7132869*x^11 - 44097821*x^12 +...

PROG

(PARI) /* As a recursive continued fraction: */

{a(n)=local(A=1+x, CF); for(i=1, n, CF=1+x; for(k=0, n, CF=1/(1-x^(n-k+1)*A^2*CF+x*O(x^n))); A=CF); polcoeff(A, n)}

(PARI) /* By Ramanujan's continued fraction identity: */

{a(n)=local(A=1+x, P, Q); for(i=1, n,

P=sum(m=0, sqrtint(n), x^(m*(m+1))/prod(k=1, m, 1-x^k)*(-A^2+x*O(x^n))^m);

Q=sum(m=0, sqrtint(n), x^(m^2)/prod(k=1, m, 1-x^k)*(-A^2+x*O(x^n))^m); A=P/Q); polcoeff(A, n)}

CROSSREFS

Cf. A005169, A192728, A192730.

Sequence in context: A000259 A007855 A193112 * A107097 A202837 A180111

Adjacent sequences:  A192726 A192727 A192728 * A192730 A192731 A192732

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 01:49 EST 2014. Contains 250017 sequences.