The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192667 E.g.f. satisfies: A(x) = 1 + x*Sum_{n>=0} (A(x)^3 - 1)^n/n!. 1
 1, 1, 6, 99, 2616, 95625, 4468608, 254426571, 17087348736, 1322490908817, 115902895680000, 11345706419279859, 1226971723559141376, 145275861381024623769, 18691551435638516649984, 2596726179631913433046875, 387404350400960574932385792 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f. A(x) equals the formal inverse of function (x-1)/exp(x^3-1). E.g.f. satisfies: A(x) = 1 + x*exp(A(x)^3-1). E.g.f.: A(x) = 1 + Series_Reversion( x/exp((1+x)^3 - 1) ). E.g.f. satisfies: A(x/G(x)) = 1 + x where G(x) = exp((1+x)^3 - 1) and G(x) = x/Series_Reversion(A(x)-1) = e.g.f. of A192989. a(n) ~ n^(n-1) / (3*sqrt(s*(1+s^2)) * exp(n) * r^n), where s = 1/9*(3 + (297/2 - (81*sqrt(13))/2)^(1/3) + 3*((1/2)*(11 + 3*sqrt(13)))^(1/3)) = 1.2228950301592487561... is the root of the equation 3*(s-1)*s^2 = 1, and r = (s-1)*exp(1-s^3) = 0.097309376917122928890... - Vaclav Kotesovec, Feb 26 2014 EXAMPLE E.g.f.: A(x) = 1 + x + 6*x^2/2! + 99*x^3/3! + 2616*x^4/4! +... where (A(x) - 1)/exp(A(x)^3-1) = x and A(x/G(x)) = 1 + x where G(x) = exp(3*x + 3*x^2 + x^3): G(x) = 1 + 3*x + 15*x^2/2! + 87*x^3/3! + 585*x^4/4! + 4383*x^5/5! +... Related expansions. (A(x)^3-1) = 3*x + 24*x^2/2! + 411*x^3/3! + 11088*x^4/4!  + 410175*x^5/5! +... (A(x)^3-1)^2 = 18*x^2/2! + 432*x^3/3! + 13320*x^4/4! + 529920*x^5/5! +... (A(x)^3-1)^3 = 162*x^3/3! + 7776*x^4/4! + 377460*x^5/5! +... (A(x)^3-1)^4 = 1944*x^4/4! + 155520*x^5/5! +... MATHEMATICA CoefficientList[1 + InverseSeries[Series[x/E^((1+x)^3 - 1), {x, 0, 20}], x], x]*Range[0, 20]! (* Vaclav Kotesovec, Feb 26 2014 *) PROG (PARI) {a(n)=local(A=1+serreverse(x/exp(3*x+3*x^2+x^3+x^2*O(x^n)))); n!*polcoeff(A, n)} (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*exp(A^3-1+x*O(x^n))); n!*polcoeff(A, n)} (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*sum(m=0, n, (A^3-1+x*O(x^n))^m/m!)); n!*polcoeff(A, n)} CROSSREFS Cf. A192949, A192989. Sequence in context: A187522 A224615 A138913 * A127636 A281502 A226413 Adjacent sequences:  A192664 A192665 A192666 * A192668 A192669 A192670 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 12:05 EST 2020. Contains 338923 sequences. (Running on oeis4.)