login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192666 E.g.f. satisfies: A(x) = exp(-1)*Sum_{n>=0} (1 + x*A(x))^(n^2)/n!. 0
1, 2, 21, 444, 14415, 637268, 35822203, 2450234160, 197807272289, 18431380399184, 1948783220129813, 230702141895062720, 30251527782113610991, 4355262112839582661824, 683368350046603022039867, 116136704024677305164141056 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare to e.g.f. W(x) = LambertW(-x)/(-x) of A000272 (with offset) generated by: W(x) = exp(-1)*Sum_{n>=0} (1+x*W(x))^n/n! = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.

LINKS

Table of n, a(n) for n=0..15.

FORMULA

E.g.f.: A(x) = Series_Reversion(x/G(x))/x, where G(x) = A(x/G(x)) = e.g.f. of A014507.

EXAMPLE

E.g.f.: A(x) = 1 + 2*x + 21*x^2/2! + 444*x^3/3! + 14415*x^4/4! +...

where A(x) = G(x*A(x)) and A(x/G(x)) = G(x) = e.g.f. of A014507:

G(x) = 1 + 2*x + 13*x^2/2! + 162*x^3/3! + 3075*x^4/4! + 80978*x^5/5! +...

PROG

(PARI) /* A(x) = 1/e*Sum_{n>=0}(1+x*A(x))^(n^2)/n! (requires precision): */

{a(n)=local(A=1+x); for(i=1, n, A=exp(-1)*sum(m=0, 3*n+10, (1+x*A +x*O(x^n))^(m^2)/m!)); polcoeff(round(serlaplace(A+x*O(x^n))), n)}

(PARI) /* E.g.f. Series_Reversion(x/G(x))/x; G(x) = e.g.f. of A014507: */

{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}

{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}

{A014507(n)=sum(k=0, n, Stirling1(n, k)*Bell(2*k))}

{a(n)=local(G=sum(m=0, n, A014507(m)*x^m/m!)+x*O(x^n)); n!*polcoeff(serreverse(x/G)/x, n)}

CROSSREFS

Cf. A014507.

Sequence in context: A090729 A090310 A024232 * A090451 A199747 A303867

Adjacent sequences:  A192663 A192664 A192665 * A192667 A192668 A192669

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 05:29 EST 2020. Contains 338899 sequences. (Running on oeis4.)