|
|
A192660
|
|
Floor-Sqrt transform of Lucas numbers (A000032).
|
|
1
|
|
|
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 11, 14, 17, 22, 29, 36, 46, 59, 76, 96, 122, 156, 199, 253, 321, 409, 521, 662, 842, 1072, 1364, 1735, 2206, 2807, 3571, 4542, 5777, 7349, 9349, 11892, 15126, 19241, 24476, 31133, 39602, 50375, 64079, 81509, 103681, 131885
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
This is the same as the floor-sqrt transform of phi^n, where phi = (1+sqrt(5))/2.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
a(n) = floor(sqrt(Lucas(n))).
|
|
MATHEMATICA
|
Table[Floor[Sqrt[LucasL[n]]], {n, 0, 100}]
|
|
PROG
|
(Maxima) makelist(floor(sqrt(fib(n-1)+fib(n+1))), n, 0, 24);
(MAGMA) [Floor(Sqrt(Lucas(n))): n in [0..50]]; // Vincenzo Librandi, Sep 30 2017
(PARI) a(n) = sqrtint(fibonacci(n-1)+fibonacci(n+1)); \\ Michel Marcus, Sep 30 2017
|
|
CROSSREFS
|
Sequence in context: A241377 A266750 A143065 * A173692 A316079 A091585
Adjacent sequences: A192657 A192658 A192659 * A192661 A192662 A192663
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Emanuele Munarini, Jul 07 2011
|
|
STATUS
|
approved
|
|
|
|