login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192634 G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n*A(x^n + x^(2*n))/n ). 1
1, 1, 2, 5, 15, 50, 191, 789, 3566, 17306, 89871, 496250, 2901931, 17901455, 116129282, 789973067, 5620945352, 41739598787, 322802306649, 2595133213658, 21650633864406, 187146890460633, 1673639663735620, 15464023782414504, 147441877065741283 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare to g.f. G(x) of A000081 (number of rooted trees with n nodes), which satisfies: G(x) = exp( Sum_{n>=1} x^n*G(x^n)/n ).

LINKS

Table of n, a(n) for n=0..24.

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 50*x^5 + 191*x^6 +...

The g.f. satisfies:

log(A(x)) = x*A(x+x^2) + x^2*A(x^2+x^4)/2 + x^3*A(x^3+x^6)/3 +...

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*subst(A, x, x^m+x^(2*m)+x*O(x^n))/m))); polcoeff(A, n)}

CROSSREFS

Cf. A192635, A000081.

Sequence in context: A245311 A148367 A306836 * A304386 A140639 A149953

Adjacent sequences:  A192631 A192632 A192633 * A192635 A192636 A192637

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 05:01 EDT 2019. Contains 324229 sequences. (Running on oeis4.)