OFFSET
1,5
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,4,-1,-4,1,1).
FORMULA
a(n) = a(n-1)+4*a(n-2)-a(n-3)-4a(n-4)+a(n-5)+a(n-6).
G.f.: -x*(x^4+x^3-3*x^2-x+1)/(x^6+x^5-4*x^4-x^3+4*x^2+x-1). [Colin Barker, Jul 27 2012]
EXAMPLE
MATHEMATICA
q = x^3; s = x^2 + x + 1; z = 40;
p[n_, x_] := Fibonacci[n, x];
Table[Expand[p[n, x]], {n, 1, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192616 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192617 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
(* A192651 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 09 2011
STATUS
approved