login
A192552
a(n) = sum(stirling2(n,k)*(-1)^(n-k)*k!^2,k=0..n).
0
1, 1, 3, 25, 387, 9481, 336723, 16340185, 1038177507, 83616187561, 8323660051443, 1003415542660345, 144043181112445827, 24279259683302736841, 4747993384270354742163, 1066206704980940216628505, 272480888391150986151565347
OFFSET
0,3
FORMULA
O.g.f.: Sum_{n>=0} n!^2 * x^n / Product_{k=0..n} (1 + k*x). [From Paul D. Hanna, Jul 20 2011]
a(n) ~ exp(-1/2) * n!^2. - Vaclav Kotesovec, Jul 05 2021
MATHEMATICA
Table[Sum[StirlingS2[n, k](-1)^(n-k)k!^2, {k, 0, n}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(stirling2(n, k)*(-1)^(n-k)*k!^2, k, 0, n), n, 0, 24);
(PARI) {a(n)=polcoeff(sum(m=0, n, m!^2*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */
CROSSREFS
Sequence in context: A251569 A319122 A304858 * A143925 A245309 A074708
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Jul 04 2011
STATUS
approved