login
A192494
Denominators of squared radii of circumcircles of non-degenerate triangles with integer vertex coordinates.
12
2, 1, 4, 18, 16, 1, 2, 9, 8, 4, 98, 50, 18, 1, 16, 4, 98, 50, 2, 64, 242, 36, 18, 1, 64, 16, 9, 196, 50, 4, 338, 98, 2, 49, 64, 242, 25, 162, 18, 9, 4, 338, 578, 256, 98, 50, 324, 722, 242, 16, 1, 18, 8, 100, 2, 98, 98, 49, 242, 25, 722, 1058, 1, 36, 32, 16, 121, 4, 578, 338, 18, 256, 98, 9, 144, 484, 50, 64, 50, 242, 1
OFFSET
1,1
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..9089, covering range R^2 <= 100.
EXAMPLE
The smallest triangle of lattice points {(0,0),(1,0),(0,1)} has circumradius R=sqrt(2)/2, i.e., R^2=1/2. Therefore A192493(1)=1, a(1)=2.
CROSSREFS
Cf. A192493 (corresponding numerators).
Sequence in context: A025228 A267377 A132945 * A013156 A012925 A012930
KEYWORD
nonn,frac
AUTHOR
Hugo Pfoertner, Jul 10 2011
STATUS
approved