login
A192482
a(n) = 2^n*C(n-1)-y(n), where y(n) = Sum_{i=1..n-1} (2^i*C(i-1)-y(i))*(2^(n-i)*C(n-i-1)-y(n-i)), y(0)=0, y(1)=1 and where C(i) is the i-th Catalan number.
1
1, 3, 10, 51, 286, 1710, 10740, 69763, 464822, 3159450, 21821516, 152708078, 1080452972, 7716009724, 55545950568, 402649640163, 2936600795174, 21532660592418, 158645924209500, 1173875395710458, 8719519396134596, 64995349923442628, 486020221692290392
OFFSET
1,2
COMMENTS
The sequence a(n) for n>=1 is the number of rows with the value true in the truth tables of all bracketed formulas with n distinct variables connected by the binary connective of m-implication, case(i).
FORMULA
a(n) = 2^n*C(n-1)-y(n), where y(n) = Sum_{i=1..n-1} (2^i*C(i-1)-y(i))*(2^(n-i)*C(n-i-1)-y(n-i)), y(0)=0, y(1)=1 and C(i) is the i-th Catalan number.
MAPLE
C:= n-> binomial(2*n, n)/(n+1):
y:= proc(n) option remember;
`if`(n<2, n, add((2^i *C(i-1) -y(i))*
(2^(n-i)*C(n-i-1)-y(n-i)), i=1..n-1))
end:
a:= n-> 2^n*C(n-1) -y(n):
seq(a(n), n=1..30); # Alois P. Heinz, Feb 06 2012
MATHEMATICA
c = CatalanNumber; y[n_] := y[n] = If[n<2, n, Sum[(2^i*c[i-1]-y[i])*(2^(n-i)*c[n-i-1] - y[n-i]), {i, 1, n-1}]]; a[n_] := 2^n*c[n-1]-y[n]; Table[ a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A307099 A048175 A288953 * A233537 A020132 A330042
KEYWORD
nonn
AUTHOR
Volkan Yildiz, Jul 01 2011
STATUS
approved