This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192466 Coefficient of x in the reduction by x^2->x+2 of the polynomial p(n,x)=1+x^n+x^(2n). 3
 2, 6, 24, 90, 352, 1386, 5504, 21930, 87552, 349866, 1398784, 5593770, 22372352, 89483946, 357924864, 1431677610, 5726666752, 22906579626, 91626143744, 366504225450, 1466016202752, 5864063412906, 23456250855424, 93824997829290 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. LINKS FORMULA Empirical G.f.: -2*x*(x^2 - 3*x + 1) / ((x - 1)*(x + 1)*(2*x - 1)*(4*x - 1)). - Colin Barker, Nov 12 2012 Conjectures from Colin Barker, Feb 14 2017: (Start) a(n) = (-1 - (-1)^n + 2^n + 4^n) / 3. a(n) = 6*a(n-1) - 7*a(n-2) - 6*a(n-3) + 8*a(n-4) for n>4. (End) EXAMPLE The first four polynomials p(n,x) and their reductions are as follows: p(1,x)=1+x+x^2 -> 3+2x p(2,x)=1+x^2+x^4 -> 9+6x p(3,x)=1+x^3+x^6 -> 25+24x p(4,x)=1+x^4+x^8 -> 93+90x. From these, read A192465=(3,9,25,93,...) and A192466=(2,6,24,90,...) MATHEMATICA (See A192465.) CROSSREFS Cf. A192232, A192465, A192467. Sequence in context: A293774 A226037 A003450 * A115220 A293185 A292984 Adjacent sequences:  A192463 A192464 A192465 * A192467 A192468 A192469 KEYWORD nonn AUTHOR Clark Kimberling, Jul 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 08:51 EDT 2019. Contains 322328 sequences. (Running on oeis4.)